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EXECUTIVE SUMMARY

This research program was funded in 1992-1997 by the Defense Advanced
Research Project Agency of the Department of Defense, under the University
Research Initiative at Rensselaer Polytechnic Institute, and administered by the
Office of Naval Research. The main focus of the program was to provide
research support and computational tools for processing and design of
high-temperature composite materials and structures.

Professor George Dvorak served as Program Director.  The co—principal
investigators included Professors David Duquette, Jacob Fish, Joseph Flaherty,
William Hillig, John Hudson, Mark Shephard, Sanford Sternstein and Norman
Stoloff, all of Rensselaer Polytechnic Institute. About 25 graduate students have
participated at different stages of their degree programs.

The overall goal of the research program was the development of material
behavior models, their implementation in a software framework, and completion of
related  material  processing and  characterization studies to  support
mechanism—based design of composite materials and structures.  This included
micromechanical modeling of elastic and inelastic behavior and damage, and
implementation in multiscale computational analysis at the micro, meso and
macrolevels; modeling of hot pressing of metal matrix composites, and of vapor
deposition processes for fabrication of ceramic matrix composites and fibers;
characterization of certain commercially available fibers and composite systems;
and processing and characterization of MoSi, and Cr3Si - based composites.

MICROMECHANICAL MODELING

Mechanism-based design of composite structures involves modeling of
material responses and interactions on different physical scales, ranging from the
reinforcement ~ matrix microscale, through the dimensions of plies or woven layers
in a laminate, to the macroscale of actual composite parts. Evaluation of the
overall thermomechanical response of the composite material systems and
laminates in terms of the geometry and properties of the constituent phases was




accomplished by several methods. Among the available techniques were the
averaging methods, such as the Mori-Tanaka and self-consistent estimates, and
the Hashin-Shtrikman bounds. These provide the effective elastic moduli, thermal
expansion coefficients, and thermal diffusivities, together with estimates of the
average mechanical and thermal fields in the constituents and at their interfaces.

The techniques developed under the present program include the
transformation field analysis (TFA) for evaluation of the inelastic response and
the associated local fields in the phases and plies for systems with viscoelastic or
thermo—viscoplastic matrices and/or fibers, both in the perfectly bonded state and
after fiber decohesion. The transformation analysis regards any inelastic
deformation, as well as thermal deformations or phase transformations, as a
stress—free strain or eigenstrain that is applied to an otherwise elastic composite
material or laminate together with the prescribed mechanical loads. Using certain
transformation concentration factors and constitutive relations for the inelastic
phases, this method provides a set of differential equations for evaluation of the
instantaneous local fields in the phases, or at integration points in finite elements
of subdivided unit cells. The instantaneous overall response of the composite or
laminate is then obtained in terms of the local fields. Certain damage processes,
such as progressive particle or fiber debonding and sliding, have also been modeled
in terms of transformation strains. A unified procedure for determination of
overall loading conditions that cause onset and initial evolution of local damage in
laminates has been developed and the results displayed as initial and subsequent
failure maps. These maps are plotted in laminate stress coordinates and consist
of a number of branches that represent critical magnitudes of local stresses within
individual plies which may initiate local cracking in the fibers, matrices or at
interfaces. Such maps are now available for symmetric metal and ceramic matrix
laminates.  They include the effect of residual stresses, gemerated by thermal
changes and inelastic deformation during processing and in service, on the omset of
damage in laminates. Models of progressive interfacial debonding in particulate
and fibrous composites were developed, together with studies the effect of fiber
size on debonding energy. The results indicate that for given interface properties,
small diameter fibers and particles are more resistant to debonding than larger
ones.




Functionally graded composite materials with variable moduli and thermal
expansion coefficients are useful in fabrication of coatings, parts subjected to
thermal gradients, and also in joining ceramic and metal parts. Much work in
recent years has been devoted to development of modeling methods for these
material systems. Our work has been concerned with comparisons of average local
fields and overall response of discrete and homogenized models for functionally
graded materials under several typical thermomechanical loading conditions.
Steady state heat conduction problem were also solved and the resulting
temperature distributions compared. The results of these comparisons indicate
that standard averaging methods can be used in replacing graded systems by
homogenized layered systems, providing that the Mori-Tanaka method is used in
those parts of the microstructure which have a well-defined matrix, and the
self—consistent method in parts with skeletal microstructures. Nonlocal methods
were also developed, but should be needed only is situations where field gradients
are large and field averages small.

Experimental characterization of fabric reinforced SiC/SiC and SiC/Al;0;
coupon and tube specimens, obtained from DuPont Lanxide, Inc., was a part of
the modeling program. Apart from specific strength and endurance data at both
ambient and elevated temperatures, the experiments provide information on overall
response of these fabric-reinforced composites during damage development and in
saturation damage state. A substantial part of the overall strength is preserved
even after extensive matrix damage. Work is under way to determine and
experimentally verify under combined plane-siress loading the constitutive
equations that govern mechanical response of these systems.

DESIGN AND ANALYSIS SOFTWARE

In the area of software development, we have completed development of
mechanism-based multi—scale analysis tools for fabricating and designing
high-temperature composite materials and structures. The new capability links
deformation, damage and crack propagation behaviors at three physical scales, the
fiber/particle microscale, ply/weave mesoscale and the part or structure
macroscale. Detailed geometrical models with automatically generated meshes and
modification tools, various homogenization methods and advanced visualization




modes and attributes are available at all three scales. For example, design
changes in reinforcement shape and orientation can be translated into overall
composite properties and hence to deformation of a part or structure under load.
Any chosen structure can be evaluated under prescribed thermal and mechanical
service loads at all three scales for local stresses, temperatures, and deformation
and damage states. These capabilities are applicable to CMCs, MMCs amd
PMCs with complex architectures and possibly hybrid reinforcement, and allow for
linear or nonlinear behaviors with temperature—dependent material properties.
Both in-house and commercially available software codes and data bases were
assembled to provide a ramge capabilities with different computational costs and
complexities, and integration of computed results with material testing.  Also,
extensive work was completed on simulations of manufacturing processes, such a
hot isostatic pressing, diffusion bonding, reactive vapor infiltration and chemical
vapor deposition.

The CAD framework offers the designer numerous tools for modeling,
analysis and design of both composite material systems and large composite
structures, while controlling idealization errors through multiscale, adaptive or
heuristic means.  The high-temperature property database contains over 320
material systems or constituents, 18,000 values and 180 material characteristics.
Geometric modeling tools built on commercial geometric modelers create
microstructures, weaves, plies, laminates and part scale models, and source their
data from a user-selected properties and design parameters in a spreadsheet
format. An analysis attribute code links physical material properties and
boundary conditions with the micro- and/or macro-structural geometry.
Automatic meshing tools, generic mesh operations and data structures, and the
interfaces to multiple finite element analysis codes complete the integration of
automated modeling tools for finite element analysis.

The system invites the user to comstruct an "analysis goal" in terms of
design description and analysis characteristics. These include functionality
definitions, such as thermomechanical boundary conditions within prescribed
deflections and heat flow direction; and specification of the type of analysis result,
time and reliability needed to confirm the governing behavior.  The goal
description is converted into a data flow model and a sequence of code executions,
or a "strategy" that provides the desired results to the user. The execution of




the analysis goal is similar to using a spreadsheet function, requiring no expertise
in the underlying theories or software development.The user is informed of any
specific problem with the selected design parameters. The results are
automatically computed and returned to the spreadsheet, used as input in
subsequent design steps, or displayed by a visualization code.

Material modeling capabilities of the system include codes for evaluation of
elastic properties of various composite material systems, initial failure maps of the
constituents and their interfaces, and mathematical homogenization of unit cells
that reﬁresent behavior of periodic microstructures with complex internal
geometries, such as aligned or random fiber and particle distributions and weaves.
The composite material properties, such as elastic moduli, CTEs, and heat
conductivities are evaluated with several micromechanical averaging methods, or in
terms of Hashin-Shtrikman bounds, in terms of constituent properties, their
geometry and volume fractions. Associated codes evaluate mechanical, thermal,
and transformation concentration factors which provide averages of local stress and
strain fields in the phases under prescribed overall stresses, temperature changes,
or phase transformations. Inverse routines are available for evaluation of in situ
reinforcement properties from overall composite and neat matrix experimental
data. The results are displayed in comprehensive graphs which show, for
example, overall property variations in terms of phase geometry, volume fractions
and temperature. _

Efficient procedures for accurate solutions of structural problems with
inelastic materials, where the deformation history needs to be evaluated at all
integration points and modeling scales involved have also been developed with
novel modeling schemes based on mathematical homogenization theory with
eigenstrains and the transformation field analysis. Solution of the very large
systems involved is now possible at a cost comparable to problems in
homogeneous media, without significantly compromising solution accuracy.

PROCESS MODELING

Adaptive software has been developed for solving fabrication and longevity
problems in ceramic matrix composites. Also, mathematical models were
formulated for three processes, (i) manufacture of CMCs by reactive vapor




infiltration, (ii) coating of ceramic fibers by CVD, and (iii) oxidation of ceramic
composites.

The adaptive software solves steady state or transient reaction, convection
and diffusion problems in in two dimensions, and to a limited extent also in three
dimensions. Estimates of discretization errors are used to monitor accuracy and
control the adaptive solution procedure. Accurate and efficient simulations of
complex phenomena, such as sharp moving interfaces and reaction zones, havebeen
implemented through automatic mesh refinement and coarsening (h-refinement),
method-order variation (p-refinement), and mesh motion (r-refinement). Severe
material distortions that occur during deposition, heating and cooling can thus be
followed. A user—friendly interface has been implemented that allows for changes
in the mathematical model and system parameters. The software executes on
both serial and parallel systems. .

The reactive vapor infiltration work focused on fabrication of MoSis,
composites. The key reactions and dilatation driven mechanical deformation were
reflected in the model that predicted reaction rates within 10%, and final
porosities within 1-2% of observed values. Process improvements were suggested
for reduction of severe swelling an possible cracking and confirmed by experiment.
The improved process was started with a powdered mixture of Mo and MoSis,,
instead Mo alone.  Predicted siliciding proceeded at twice the rate of the
homogenenous powder, and after compression to 45% porosity, the pores filled
without appreciable swelling.

Coating by CVD of sapphire fibers with beta—alumina was modeled in hot
and cold-water reactors. Critical process parameters for production of even
coatings include the flow rate, the speed of the fiber, the injection rate of the
(reactive) precursor species in the flow, and the reactor temperature. Strategies
have been identified to minimize wall coating and process time while producing a
uniform fiber coating. The model is capable of analyzing transient and steady
flows of multiple species, heating by conduction, convection and radiation,
chemical surface reactions, and geometry changes due to fiber motion and
deposition. Cold-walled reactors appear to be much more efficient than
hot-walled ones, and injecting the precursor into the flow near the fiber minimizes
losses.




Oxidation of CMC matrices by gaseous species was modeled as a coupled
reaction diffusion system for chemical species, with gaseous oxidants that permeate
protective coatings and react with the viscous matrix material that deforms
according to the Navier-Stokes equations. The reaction of oxygen and water vapor
with a ceramic matrix in the vicinity of a small crack have been described as a
two—phase diffusion of gases in the crack and their diffusion and convection in the
solid matrix. Gaseous flows involve both bulk and Knudsen diffusion.
Improvements under consideration include modeling of self contact to describe
visco—elastic or visco-plastic material deformation after the crack has closed, and
analyses of systems of interacting cracks and fibers of various distributions.

MATERIALS PROCESSING AND CHARACTERIZATION

The processing effort focused on intermetallic compounds with attractive high
temperature properties, such as high melting point, low densities and excellent
oxidation resistance compared to nickel-based superalloys. Two Mo-modified
Cr;Si compounds were consolidated from prealloyed powders. To improve
toughness, 15% volume fraction reinforcement by Saphicon short fibers, and ductile
continuous Pt alloy fibers was introduced. Results have shown no significant
changes in stiffness due to the reinforcement, but a significantly higher toughness
was measured at elevated temperatures. Also, the unnotched strength at
1000-1100°C increased from that at the room temperature due to the inclusion of
fibers. Oxidation tests at 500°C showed absence of the "pest" phenomenon, and
good resistance at 12509C. Another system studied was MoSi, reinforced with
SiC whiskers and/or particles. Consolidation by reactive sintering of elemental
powders was used in an attempt to reduce cost and improve purity The high
temperature strength of reinforced MoSi; increased unmtil 12000C, presumably
indicating some effect from the smaller grains and cleaner product, and a major
contribution from the reinforcement. The results suggest that both systems show
promising high-temperature properties with a potential for further improvement.

Experimental investigation of fiber coatings by CVD was carried out in a
low pressure reactor, with deposition of aluminum nitride from an organoalunﬁnum
precursor on sapphire fibers.  Coherent, pinhole—free were prepared by this
technique and incorporated into a MoSi, matrix. the AIN coatings protected the




fibers from attack by HCl generated by forming the MoSi; by the reaction of
SiCly with bulk Mo in H atmosphere. Unprotected fibers were completely
consumed by the reaction.

Coupon and tubular samples of two commercially available composite
systems were obtained from DuPont Lanxide, Inc. One set was enhanced SiC/SiC
combined with proprietary inhibitors, reinforced with a 8-10 layer (0/90) plain
weave fabric, at 35% fiber volume fraction. The 15% void volume was unevenly
distributed as macroscopic surface-connected pores within and between the plies.
The second system was a SiC fabric (12-harness satin weave) reinforced Al;0,
manufactured using the Lanxide DiMOx process. The matrix was formed by
directional oxidation of a molten alloy, with about 2% trapped residual metal.
Porosity is microscopic and well-dispersed, but extensive matrix microcracking was
observed on as-received samples. Baseline data show Young’s modulus and
proportional limit approximately constant between 20°C and 12000C, equal to 120
GPa and 75 MPa for SiC/SiC, and 130 GPa and 60 MPa for SiC/Al1,03,
respectively. In the SiC/SiC, ultimate strength'increases with temperature above
10009C, but decreases in the SiC/Al,03; between 200C and 1000°C. The cyclic
endurance limit is strongly affected by temperature in both materials, it generally
decreases from the maximum 170MPa at 20°C (10 Hz, R=0.1) to below 65 MPa
above 8509C. Static fatigue life measurements at 1000°C over a range of stresses
and rupture times up to 240 hrs show linear relationships between applied stress
and logarithm of rupture time. No run-out was observed in the SiC/SiC system,
while run—out under 80 MPa was found for the SiC/Al,0; composite.

Oxidation studies at 500-1200°C in dry air, oxygen, water vapor and argon
up to 200 hrs. For both SiC/Al,O3 and SiC/SiC, oxidation in dry environments
causes outgassing of volatile species, followed by a stable weight gain independent
of the environment. Inclusion of water vapor and addition of salts in the vapor
both elevate oxidation rates.

Short-term tensile test data and long-term static and cyclic fatigue limits
are not strongly affected by the presence of pure oxygen, air or water vapor up
to 10009C. No modulus decrease is observed at stresses below proportional limit.
Conversely, stress—free exposure to 1200°C air, oxygen or argon for as little as 100 --
hrs. results in dramatic loss of strength and stiffness, due to deterioration of the
fibers and internal reaction of surroundings with the fibers. As in other ceramic




systems, aggressive emnvironments, such as  water vapor and Na,SO4 or NaCl
reduce creep rupture life. Formation of internal and surface silica under
stress—free oxidizing conditions may result in healing of internal cracks. For
example, SiC/SiC samples with internal cracking due to loading above the
proportional limit recovered 85% of the original modulus after 5hrs. in 1000°C air,
oxygen or water vapor. Similar effects were observed in the SiC/Al;Oj system.
Finally, surface coating of specimens appears to play a vital role in lifetime.
Removing as little as 25% of the SiC coating on the SiC/SiC system reduces
static rupture time by 80% in 1000°C air or water vapor.

At high temperatures, many fibers exhibit deviations from linear elastic
behavior, which influences component lifetime, and also dynamic properties, such
as resonance frequencies and damping factors, of interest in design of turbine parts
and other rotating components. An apparatus has been comstructed for the forced
vibration dynamic mechanical testing of single ceramic fiber samples at
temperatures up to 1600°C and frequencies from 0.1 to 25 Haz. Experimentally
based dynamic constitutive relations were developed for commercial sapphire,
YAG, and several SiC fibers.

CLOSURE

The described program was instrumental in bringing together the efforts of
many investigators from mechanics, materials modeling, computer science and
materials science, with an objective to model, fabricate, process and characterize
composite materials for ambient and high-temperature applications. In addition
to the numerous research papers, book chapters and reports, a significant product
of the program is a comprehensive software package that incorporates a material
data base, advanced micromechanical models for evaluation of overall properties of
elastic and inelastic composite materials, novel process modeling procedures, and
techniques for multiscale analysis and design of composite structures, together with
user—friendly interfaces and visualization tools. = Moreover, experiments with
in-house fabricated and commercially available fibers and composite systems have
produced a wealth of data and many useful insights into the behavior of
high—temperature composite systems.




MECHANISM — BASED DESIGN OF COMPOSITE STRUCTURES
PROGRAM OVERVIEW AND ACCOMPLISHMENTS

George J. Dvorak

Center for Composite Materials and Structures
Rensselaer Polytechnic Institute

Troy, NY 12180-3590

ABSTRACT

This paper surveys the accomplishments of the title research program
which was funded in 1992-1997 by the Defense Advanced Research Project
Agency of the Department of Defense, under the University Research
Initiative at Rensselaer Polytechnic Institute. The main focus of the
program was to provide research support and computational tools for
processing and design of high—temperature composite materials and
structures. Micromechanical modeling, design and analysis software, process
modeling, and materials processing and characterization are discussed.

INTRODUCTION

Designing with composite materials for high—temperature applications
presents numerous challenges that require an extensive background in
material design and processing, structural analysis, and material behavior in
adverse environments. The overall goal of the research program has been the
development of a software framework and associated modules, and
completion of related material processing and characterization studies to
support mechanism—based design of composite materials and structures.
This includes micromechanical modeling of elastic and inelastic behavior and
damage, and implementation in multiscale computational analysis at the
micro, meso and macrolevels; modeling of vapor deposition processes for
fabrication of ceramic matrix composites and fibers; characterization of
certain commercially available systems; and processing and characterization
of MoSiy and Cr;Si — based composites.

The team of co—principal investigators include Professors Duquette,
Fish, Flaherty, Hillig, Hudson, Shephard, Sternstein and Stoloff, as well as
the writer who serves as program director. Research faculty include Drs.
Adjerid, Belsky, Lipetzky and Wentorf. About 25 graduate students have
participated at different stages of their degree programs.




MICROMECHANICAL MODELING

Mechanism—based design of composite structures involves modeling of
material responses and interactions on different physical scales, ranging from
the reinforcement — matrix microscale, through the dimensions of plies or
woven layers in a laminate, to the macroscale of actual composite parts.
Evaluation of the overall thermomechanical response of the composite
material systems and laminates in terms of the geometry and properties of
the constituent phases can be accomplished by several methods. Among the
available techniques are the averaging methods, such as the Mori—Tanaka
and self—consistent estimates, and the Hashin—Shtrikman bounds. These
provide the effective elastic moduli, thermal expansion coefficients, and
thermal diffusivities, together with estimates of the average mechanical and
thermal fields in the constituents and at their interfaces The techniques
developed under the present program include the transformation field
analysis (TFA) for evaluation of the inelastic response and the associated
local fields in the phases and plies for systems with viscoelastic or
thermo—viscoplastic matrices and/or fibers, both in the perfectly bonded
state and after fiber decohesion.

The transformation analysis regards any inelastic deformation, as well as
thermal deformations or phase transformations, as a stress—free strain or
eigenstrain that is applied to an otherwise elastic composite material or
laminate together with the prescribed mechanical loads (1, 2]. Using certain
transformation concentration factors and constitutive relations for the
inelastic phases, this method provides a set of differential equations for
evaluation of the instantaneous local fields in the phases, or at integration
points in finite elements of subdivided unit cells. The instantaneous overall
response of the composite or laminate is then obtained in terms of the local
fields. Certain damage processes, such as fiber debonding and sliding, have
also been modeled in terms of appropriate transformation strains, and their
effect on the local fields and overall response determined in a similar way [3].

A unified procedure for determination of overall loading conditions that
cause onset and initial evolution of local damage in laminates has been
developed and the results displayed as initial and subsequent failure maps.
These maps are plotted in laminate stress coordinates and consist of a
number of branches that represent critical magnitudes of local stresses within
individual plies which may initiate local cracking in the fibers, matrices or at
interfaces. Such maps are now available for symmetric metal and ceramic
matrix laminates [4].

Functionally graded composite materials with variable moduli and
thermal expansion coefficients are useful in high—temperature applications
involving thermal gradients. Other applications can be found, for example,
in joining ceramic and metal parts. Our work has established that specific
averaging methods can be selectively used to find overall properties and
response of typical graded microstructures under both mechanical and
thermal loading gradients [5].




DESIGN AND ANALYSIS SOFTWARE

The different analysis procedures that describe constituent, composite,
laminate and structural responses at the appropriate scales have been
implemented in a comprehensive framework that offers the designer with
numerous tools for modeling, analysis and design of both composite material
systems and large composite structures, while controlling idealization errors
through multiscale, adaptive or heuristic means. The framework provides
application expertise and visualization tools at different design stages [6, 7].

Commercial programs are applied where possible. The Mvision™ format
from MSC/PDA Engineering accommodates the material database con—
- structed from available and our own data, which conforms to or can be
translated into ASTM and applicable PDES/STEP standards [8]. The
high—temperature property database contains over 320 material systems or
constituents, 18,000 values and 180 material characteristics. Geometric
modeling tools built on commercial geometric modelers create micro—
structures, weaves, plies, laminates and part scale models, and source their
data from a user—selected properties and design parameters in a spreadsheet
format [9]. An analysis attribute code links physical material properties and
boundary conditions with the micro— and/or macro—structural geometry.
Automatic meshing tools, generic mesh operations and data structures, and
the interfaces to multiple finite element analysis codes complete the
integration of automated modeling tools for finite element analysis.

The system invites the user to construct an "analysis goal" in terms of

design description and analysis characteristics. These include functionality
definitions, such as thermomechanical boundary conditions within prescribed
deflections and heat flow direction; and specification of the type of analysis
result, time and reliability needed to confirm the governing behavior. The
goal description is converted into a data flow model and a sequence of code
executions, or a "strategy" that provides the desired results to the user.
The execution of the analysis goal is similar to using a spreadsheet function,
requiring no expertise in the underlying theories or software development.
The user is informed of any specific problem with the selected design
parameters. The results are automatically computed and returned to the
spreadsheet, used as input in subsequent design steps, or displayed by a
visualization code.

Material modeling capabilities of the system include codes for evaluation
of elastic properties of various composite material systems, initial failure
maps of the constituents and their interfaces, and mathematical
homogenization of unit cells that represent behavior of periodic
microstructures with complex internal geometries, such as aligned or random
fiber and particle distributions and weaves. The composite material
properties, such as elastic moduli, CTEs, and heat conductivities are
evaluated with several micromechanical averaging methods, or in terms of
Hashin—Shtrikman bounds, in terms of constituent properties, their geometry
and volume fractions. Associated codes evaluate mechanical, thermal, and




transformation concentration factors which provide averages of local stress
and strain fields in the phases under prescribed overall stresses, temperature
changes, or phase transformations. Inverse routines are available for
evaluation of in situ reinforcement properties from overall composite and
neat matrix experimental data. The results are displayed in comprehensive
graphs which show, for example, overall property variations in terms of
phase geometry, volume fractions and temperature.

In addition to the averaging methods, mathematical homogenization
theory is used together with unit cell designs in evaluations of elastic and
inelastic responses of both simple and very complex microstructural
geometries, such as weaves [10]. Although computationally more expensive,
such techniques allow for a very fine resolution of the local fields, which is
needed, for example, for accurate satisfaction of the local constitutive
relations of viscoelastic or thermo—viscoplastic phases. The software
framework provides facilities to automatically create the unit cell geometric
models from size parameters of the constituent features. Composite
thermoelastic moduli, instantaneous inelastic  stiffnesses, thermal
conductivities and chemical diffusivities can be predicted in this manner, and
the results readily incorporated into a multiscale computation of both linear
and nonlinear structural response.

In general, accurate solutions of structural problems for nonlinear
heterogeneous materials present an enormous challenge, because the the
nonlinear deformation history needs to be evaluated at all integration points
and modeling scales involved. Typically, about 99% of the CPU time is
spent on constitutive equation solutions in the unit cells. Solution of such
large systems in heterogeneous media is now possible at a cost comparable to
problems in homogeneous media, without significantly compromising solution
accuracy. ~This is accomplished by a a novel modeling scheme based on
mathematical homogenization theory with eigenstrains [11] and trans—
formation field analysis [1, 2].  The overall response is computed for an
elastic structure loaded by external loads and local eigenstrains equal to the
inelastic strains. The latter are evaluated from the inelastic constitutive
relations and eigenstrain concentration factors computed in the average sense
for each phase, so that history data is updated only at two or three points
(fiber, matrix, interphase) in the microstructure. Macroscopic history data is
stored in the data base and then applied in the post—processing stage to unit
cells in critical locations identified by microscale reduction error indicators.
In an actual analysis of an engine flap, discretized with 788 tetrahedral
elements (993 unknowns), and with the unit cell microstructure discretized
with 98 elements for the fiber and 253 for the matrix, the CPU time on a
SPARC 10/51 for the classical homogenization solution of this problem was 8
hours. The new technique with microhistory recovery required only 30 sec.,
with 3% maximum error in the micro—stress located in a critical region.
Another application involves micromechanical analysis of ceramic composite
seals for Allison Engine Co. This is g part with complex woven fiber
microstructure, where fabrication—induced residual stresses and onset and
evolution of damage have a significant influence on total lifetime.




PROCESS MODELING

Mathematical models and software for analysis of multiscale processes,
such as evolving reaction fronts, boundary layers and molecular interactions,
have been developed with the aid of adaptive methods for solving systems of
partial differential equations [12, 13]. Such methods automatically refine,
coarsen and relocate meshes and vary method orders in both time and space;
hence, they are capable of resolving local nonuniform behavior. Adaptive
algorithms use estimates of discretization errors and/or other information
obtained during the computation to improve solution accuracy. The
adaptive software uses this information to create strategies to decrease the
error to a desired level as quickly as possible. Error estimation techniques,
optimal adaptive enrichment strategies, and time integration techniques are
employed to improv: efficiency, accuracy and robustness [14]. These tools
are being incorporated into an object—oriented framework that will simplify
development of new applications in materials science and mechanics.

Specific applications have been made in analysis of a cylindrical CVD
reactor used in surface coatings of sapphire fibers with Al;O; and La,0s.
The flow of carrier gas mixture of argon and oxygen is modeled as that of a
compressible ideal fluid including convection, conduction and radiation.
Precursor species are modeled by convection—diffusion systems. Surface
reaction rates are assumed proportional to an impingement rate and
dependent on temperature in an Arrhenius manner. Parameter studies of
varying geometries and operating conditions revealed advantages and
deficiencies of reactor design and function.

Protecting ceramic matrix composites from oxidation in hostile
environments may require several layers of coating. Under stress, cracks
may form and penetrate these coatings, thus opening the system to oxidizing
vapors.  The resulting damage may reduce useful life of composite
components; lifetime predictions consider the size, number and distribution
of cracks, as well as the properties of the constituents and their oxides. In
some instances, volume expansion accompanying the oxidation seals the
cracks and retards or eliminates further oxidation.

The reaction of oxygen and water vapor with a ceramic matrix in the
vicinity of a small crack have been described as a two—phase diffusion of
gases in the crack and their diffusion and convection in the solid matrix.
Gaseous flows involve both bulk and Knudsen diffusion. The solid model
describes a reaction—diffusion system combined with viscous deformation
according to the Navier—Stokes equations. A volumetric flow law accounts
for density changes. Computationally, the problem involves several complex
reactions, moving boundaries, sharp transient reaction fronts and complex
geometries. Specific results have been found for a crack in a SiC matrix
exposed to oxygen. Improvements under consideration include modeling of
self contact to describe visco—elastic or visco—plastic material deformation
after the crack has closed, as well as analyses of systems of multiple
interacting cracks and fibers of various distributions.




MATERIALS PROCESSING AND CHARACTERIZATION

The processing effort focused on intermetallic compounds with attractive
high temperature properties, such as high melting point, low densities and
excellent oxidation resistance compared to nickel—based superalloys. Two
Mo—modified Cr;Si compounds were consolidated from prealloyed powders
[15]. To improve toughness, 15% volume fraction reinforcement by Saphicon
short fibers, and ductile continuous Pt alloy fibers was introduced. Results
have shown no significant changes in stiffness due to the reinforcement, but a
significantly higher toughness was measured at elevated temperatures. Also,
the unnotched strength at 1000—1100°C increased from that at the room
temperature due to the inclusion of fibers. Oxidation tests at 5009C showed
absence of the "pest" phenomenon, and good resistance at 1250°C. Another
system studied was MoSi, reinforced with SiC whiskers and/or particles.
Consolidation by reactive sintering of elemental powders was used in an
attempt to reduce cost and improve purity The high temperature strength of
reinforced MoSi, increased until 1200°C, presumably indicating some effect
from the smaller grains and cleaner product, and a major contribution from
the reinforcement. The results suggest that both systems show promising
high—temperature properties with a potential for further improvement (16].

Coupon and tubular samples of two commercially available composite
systems were obtained from DuPont Lanxide, Inc. One set was enhanced
SiC/SiC combined with proprietary inhibitors, reinforced with a 8—10 layer
(0/90) plain weave fabric, at 35% fiber volume fraction. The 15% void
Volume was unevenly distributed as macroscopic surface—connected pores
within and between the plies. The second System was a SiC fabric
(12-harness satin weave) reinforced AlyO3; manufactured using the Lanxide
DiMOx process. The matrix was formed by directional oxidation of a molten
alloy, with about 2% trapped residual metal. Porosity is microscopic and
well—dispersed, but extensive matrix microcracking was observed on
as—received samples. Baseline data show Young’s modulus and proportional
limit approximately constant between 209C and 12000C, equal to 120 GPa
and 75 MPa for SiC/SiC, and 130 GPa and 60 MPa for SiC/Al,0;,
respectively. In the SiC/SiC, ultimate strength increases with temperature
above 1000°C, but decreases in the SiC/Al,03 between 20°C and 1000°C.
The cyclic endurance limit is strongly affected by temperature in both
materials, it generally decreases from the maximum 170MPa at 200C (10 Hz,
R=0.1) to below 65 MPa above 8500C. Static fatigue life measurements at
10009C over a range of stresses and rupture times up to 240 hrs show linear
relationships between applied stress and logarithm of rupture time. No
run—out was observed in the SiC/SiC system, while run—out under 80 MPa
was found for the SiC/Al,0; composite [17, 18].

Oxidation studies at 500-1200°C in dry air, oxygen, water vapor and
argon up to 200 hrs. For both SiC/Al,0; and SiC/SiC, oxidation in dry
environments causes outgassing of volatile species, followed by a stable
weight gain independent of the environment. Inclusion of water vapor and
addition of salts in the vapor both elevate oxidation rates.




Short—term tensile test data and long—term static and cyclic fatigue
limits are not strongly affected by the presence of pure oxygen, air or water
vapor up to 1000°C. No modulus decrease is observed at stresses below
proportional limit. Conversely, stress—free exposure to 12000C air, oxygen or
argon for as little as 100 hrs. results in dramatic loss of strength and stiffness,
due to deterioration of the fibers and internal reaction of surroundings with
the fibers. As in other ceramic systems, aggressive environments, such as
water vapor and Na;SOy4 or NaCl reduce creep rupture life. Formation of
internal and surface silica under stress—free oxidizing conditions may result
in healing of internal cracks. For example, SiC/SiC samples with internal
cracking due to loading above the proportional limit recovered 85% of the
original modulus after 5hrs. in 1000°C air, oxygen or water vapor. Similar
effects were observed in the SiC/Al,O; system. Finally, surface coating of
specimens appears to play a vital role in lifetime. Removing as little as 25%
of the SiC coating on the SiC/SiC system reduces static rupture time by 80%
in 1000°C air or water vapor (19}.

At high temperatures, many fibers exhibit deviations from linear elastic
behavior, which influences component lifetime, and also dynamic properties,
such as resonance frequencies and damping factors, of interest in design of
turbine parts and other rotating components. An apparatus has been
constructed for the forced vibration dynamic mechanical testing of single
ceramic fiber samples at temperatures up to 1600°C and frequencies from 0.1
to 25 Hz [20, 21].” Experimentally based dynamic constitutive relations were
developed for commercial sapphire, YAG, and several SiC fibers.

CONCLUSION

The described program was instrumental in bringing together the efforts
of many investigators from mechanics, materials modeling, computer science
and materials science, with an objective to model, fabricate, process and
characterize composite materials for ambient and high—temperature
applications. A significant product of the program is a comprehensive
software package that incorporates a material data base, advanced
micromechanical models for evaluation of overall properties of elastic and
inelastic composite materials, novel process modeling procedures, and
techniques for multiscale analysis and design of composite structures,
together with user—friendly interfaces and visualization tools. ~Moreover,
experiments with in—house fabricated and commercially available fibers and
composite systems have produced a wealth of data and many useful insights
into the behavior of high—temperature composite systems.

ACKNOWLEDGEMENT

This work was supported by ONR Contract No. N00014-92—-J-1779.
Dr. William Coblenz of DARPA and Dr. Steven Fishman of ONR served as
program monitors.




REFERENCES

1. G. J. Dvorak, Transformation field analysis of inelastic composite
materials, Proc. R. Soc. London, A43T7, 311-326, 1992.

2. G. J. Dvorak, et al., The modeling of inelastic composites with trans—
formation field analysis, Modeling Simul. Mater. Sci. Eng., 2, 57T1-586, 1994.
3. G. Dvorak, et al, Pseudoplasticity of fibrous composite materials:
inelastic response of laminates with interfacial decohesion, Micromechanics of
plasticity and damage of multiphase materials, edited by A. Pineau and A.
Zaoui, Kluver Academic Publishers, Dordrecht, pp. 43-50, 1996.

4. G. J. Dvorak and M. Sejnoha, Initial failure maps for fibrous CMC
laminates, J. Am. Ceram. Soc., 78, 205-210, 1995.

5. T. Reiter and G. J. Dvorak, Micromechanical models for graded
composite materials, Journal of Mechanics and Physics of Solids, 1997.

6. S. Adjerid, et al., Mechanism—based design of composite structures, AD
Vol. 51/MD—Vol. 73, Proc. ASME Aero and Materials Divs., 271281, 1966.
7. M. S. Shephard and R. Wentorf, Toward the implementation of auto—
mated analysis idealization control, Appl. Numer. Math. 14, 105—-124, 1994.

8. PDA Engng, M/VISION Material system builder user’s guide and
reference 1.2, publ. No. 2190011, 2975 Redhill Av. Costa Mesa, CA 92626.

9. M. S. Shephard, et al.,, Automatic comstruction of 3—D models in
multiple scale analysis, Computational Mechanics, 17, 196—207, 1995.

10. J. Fish and V. Belsky, Multigrid method for a periodic heterogeneous
medium, Parts I and II, Comp. Meth. Appl. Mech. Engng, 126, 1-38, 1995.
11. J. Fish, et al., Computational plasticity for composite materials based on
mathematical homogenization, Comp. Meth. Appl. Mech. Engng, 1997.

12. S. Adjerid, et al., Adaptive numerical techniques for reactive vapor
infiltration, Ceram. Engng. Sci. Proc., 15, 924931, 1994.

13. S. Adjerid, et al., Modeling and adaptive solution of reactive vapor
infiltration problems, Model. Simul. Mater. Sci. Engng., 3, 737-752, 1995.

14. S. Adjerid, et al., High—order F. E. methods for singularly— perturbed
elliptic and parabolic problems, STAM J. Appl. Math., 55, 520— 543, 1995.

15. N. Stoloff and D. Alman, Processing and properties of MoSi,—Nb
composites, Ceramic International, 21, 289292, 1995.

16. W. Hillig, et al., An exploratory study of producing non-silicate oxide
composites by melt infiltration, Mater. Sci. Engr., A196, 183190, 1995.

17. P. Lipetzky, et al., Tensile properties of SiC/SiC composites, Mat. Sci.
Engng., A216, 11-19, 1996.

18. P. Lipetzky, et al., High—temperature cylindrical specimen grip for
biaxial loading, Rev. Sci. Instrum. 67 (5), pp. 1989-1992, 1996.

19. Duquette, D., Environmental resistance of intermetallic compounds and
composite ~materials, in Critical issues in the development of
high—temperature structural materials, ed. N. Stoloff, et al.,., TMS
Warrendale, PA, 431—444, 1994

20. S. Sternstein, et al., High—temperature dynamic mechanical testing of
ceramic fibers, Mater. Sci. Engng., A215, 9-17, 1996.

21. C. Weaver, et al., High temperature dynamic mechanical properties of
various ceramic fibers, to be published.




SOFTWARE FRAMEWORK FOR MECHANISM-BASED DESIGN OF
COMPOSITE STRUCTURES

R. Wentorf, M. S. Shephard, G. J. Dvorak, J. Fish, M. W. Beall, R. Collar, K.-L. Shek
Rensselaer Polytechnic Institute

Troy, N. Y. 12180-3590

ABSTRACT _

A software framework supporting mechanism-based design of high temperature composite
structures is described. The framework extends material property databases by allowing the
investigation and simulation of small scale behaviors which cause full scale effects. The framework
integrates a full range of modeling processes. including automated model generation tools,
numerically efficient analysis codes, post-processing and visualization, so as to minimize the effort
required to develop mechanism-based models for new behaviors and materials.

INTRODUCTION

The need for advanced software capabilities are motivated by current fabrication technology,
which allows the material’s structure to be configured for an application. and by the complexity of
phenomena governing the material’s behavior during fabrication and during subsequent loading.
Current research has developed mechanism-based models of thermomechanical behaviors for high
temperature composites and the associated fabrication and degradation processes. From the
standpoint of design, the new capability provides insight of the relationships between a material
system’s meso/micro structural design parameters and its overall behaviors.

The mechanism-based approach links behaviors at three physical scales: e.g. the fibrous
(micro), the ply/weave (meso) and the part (macro) scales. For example, design changes in the
reinforcement’s shape and orientation can be translated into overall composite properties and hence
to a part’s deflection under load. Alternatively. a macro-scale cooling hole configuration under
thermal-mechanical loading can be linked to the type and proximity of fiber-coating-matrix
debonding. Mechanism-based models allow both current and alternative material and component
designs to be evaluated more quickly without the expense of testing all macro scale configuration/
environment permutations. and can also aid the Jdesign and sizing of test fixtures for those tests
which are required.

The balance of the paper outlines some umgque features of the software system, and is
organized by the functional role of the framework tools in the overall modeling process (1]. The
aim is to present a range of software tools which can be assembled to support specific design
problems. Specific application examples are referenced where needed. Covered are the engineering
modeling tools for geometry, material test data management, applications for modeling material
behavior on multiple scales, tools for creating and manipulating numerical models, fast and
efficient analysis codes required for large linear or non-linear problems, post-processing and
visualization, and techniques by which the framework integrates the composite analysis tools.




GEOMETRY AND ATTRIBUTE DEFINITION
The framework provides tools for the

definition of engineering design geometry

and the engineering attributes to be

associated with engineering features on the

model. Tools are provided which can a)

construct standard geometric features from

given design parameters. and assemble * T a

these into non-manifold geometric models. \/ °
Example features on a small scale are cross

sections of bundles, bundle paths, Path Control Pts Sy

repetitive woven patterns, such as satin or

plain weaves, standard reinforcement

shapes such as fibers. cracked matrix

layers and voids left as a result of vapor

deposition type operations. Figure ! b)

illustrates the process where a) the cross-

sectional shape and path parameters are ’
defined to create a bundle, b) the bundle

interlacing is defined by a schematic to ‘

form a weave. and c¢) the bundles and
matrix are assembled into a unit cell for
subsequent meshing and analysis. Not all
geometry must come from parameters:
micro-graphs can be scanned to define ©)
bundle paths. The geometric modeling is
performed in stages, where the features to

be combined are selected, defined in terms

of their size and position parameters,
translated into a sequence of basic
construction operations. and the operations are executed in terms of their equivalent commercial
geometric modeling function calls. Features can be tagged for later identification of their
topological entities after construction operations have been executed. Features can also be linked
across multiple models. allowing a 1D idealization of a weave (its path) to be associated with the
appropriate region in a solid model of a unit cell. Visualization tools are available to display 3D
models in real time as both shaded and semi-transparent images. The same facilities have been used
to create and modify macro scale models. Special tools are also available for matching topological
entities for complex unit cells.

Attributes such as the constituent materials, periodic boundary conditions or prescribed
displacements are defined with respect to the features and properties translated into analysis
auributes. The SCOREC analysis attribute manager (SAM) manages the attribute information by
defining distribution of its tensorial components, links to topological model entities, and how it fits
into an organizational hierarchy. Example of a tensorial distribution is a parabolic loading produced
by a pin or bolt normal to the surface of the hole, the state of residual stress in a fiber, or the
temperature distribution on the surface of a part. Examples of links with topological entities are the
association of an elastic modulus with a solid model region representing a fiber. or the association
of an interface strength with the common surface (topological face) between a 3D fiber and matrix.

Figure 1: Parametric geometry definition




The task of collecting together ail undamaged material properties which are related to the bundles
of a weave would be accomplished by the organizational hierarchy.

TEST DATA STORAGE AND PROCESSING ‘

The framework makes use of a material database which uses the commercial MSC M/
VISION™ format and which conforms to, or can be translated into ASTM and applicable PDES/
STEP standards [2]. The high temperature database developed for the project contains more than
320 material systems or constituents, 18,000 values. and 180 material characteristics. Database
sources include published papers, industry data sheets, handbooks. and test data generated at
Rensselaer. Constituent properties (matrix and reinforcements), data for dog-bone and tubular test
specimens, and durability of tested parts in oxidizing and corrosive environments are stored.
Manufacturing size, porosity or volume fraction limitation data are available where supplied by
vendors, and background documentation and SEM images of material systems are also managed.

Several database related features are available which either directly support the conceptual
design process in material selection, or support analysis strategies. The database application can be
configured for automated merit indicy plotting {3], or for retrieval of material systems which have
performed in similar environments. Supporting reliable analysis requires data structuring so as to
define not only the analysis properties, but also the scale, specimen characteristics, source of data
and the environmental parameters of the test - the “pedigree”. Reliable analysis requires a pedigree
consistent with the underlying analysis models. Translation between the standard procedures and
nomenclature of the testing community and the material parameter needs of analysis and design is
required in order to obtain meaningful data, e.g. a standard full scale “creep” test may quantify a
behavior caused by mechanisms in a CMC which are effected by different conditions from those in
metals. The material database is also a source of known behaviors caused by the environment. For
example, the modulus of a CMC may vary with both temperature and time, depending on the
degree of micro mechanical damage before the measurement, and the presence of water, oxygen
and corrosive compounds [4. 5]. '

The commercial database package also provides a spreadsheet, by which design parameters are
edited. organized and annotated, automatically flagged when in need of update. and connected with
“back of the envelop” computations. The framework augments the spreadsheet with the means to
execute analysis strategies with these design parameters. Additionally, image processing tools were
developed to analyze images for composite modeling parameters, such as volume fractions. aspect
ratios. spacing and relative positions of constituents.

COMPUTED THERMOMECHANICAL PROPERTIES

Design analyses require material properties not available directly from test data. The
framework provides tools to compute missing properties from what is known. The tools are
categorized as either for standard geometries and constitutive behaviors, which have fast execution
times. or for complex geometries and behaviors, which employ more complex analysis procedures.

For standard geometries, which include plies of parallel fibers. random or aligned whiskers, or
particulate reinforcement, tools are available to predict overall elastic and thermal expansion
properties in terms of constituent thermo-elastic properties and volume fractions. The codes related
to ply properties implement the Hashin-Strikman Bounds (6], the Mori-Tanaka [7] or the self-
consistent methods [8]. The resulting properties computed from the methods can be compared
graphically or plotted as a function of application temperature or reinforcement volume fraction. If
tested properties for a constituent are not available, they can be computed “in-situ” by the Mori-




Tanaka or self-consistent methods if overall properties. phase volume fraction. and the properties of
the other constituent are known.

Software tools also compute mechanical, thermal. and transformation concentration factors.
These are useful for estimating phase stress and/or strain averages in two-phase and multi-phase
composites subjected to uniform overall stress or strain. a uniform change in temperature, and
uniform eigenstrains in the phases (9]. Such capabilities are used as part of post-processing for
thermal-mechanical analysis at larger scales. Additional tools provide the plane stress stiffness, the
compliance of asymmetric laminated plates under uniform in-plane loads, and the transversely
isotropic coefficients of thermal expansion for symmetric laminated plate structures under a
uniform temperature. The mechanical, thermal, and transformation distribution factors are
estimated, leading to average stresses in plies of a symmetric laminated plate under uniform in-
plane loads, temperature change, and ply eigenstrains. Other routines for standard geometries
evaluate the Eshelby tensor for transformed homogeneous inclusions of an ellipsoidal shape in an
anisotropic solid, compute the P-tensor for an ellipsoidal inclusion in an anisotropic solid, perform
numerical operations with tensors or mathematical expressions, and convert between elastic
constants, stiffness and compliance matrix forms. For non-linear behavior of fibrous MMCs, the
periodic hexagonal array and bimodal plasticity models [10] are available as ABAQUS™ routines.

UNIT CELL

With the unit cell approach, the material designer can create custom material configurations
with complex features or behaviors at micro or meso scales. This need arises when manufacturing
processes or component loading/environments produce material defects or exercise internal
mechanisms not represented by the theory underlying the standard configuration codes. The effects
of including an additional geometric feature of a constituent or altering the size parameters of a
constituent can be studied [11]. The main disadvantages have been the complex modeling process
and the computational expenses of a general numerical approach. To overcome these, the software
framework provides both automated modeling tools and efficient solvers.

The method requires that a representative geometry of the composite configuration be defined.
In the framework this begins by user defined combinations of constituent features such as fibrous
shapes, weaving patterns, crack or void patterns. The features are sized with dimensional
parameters defined from processed images or as specified by the designer. Constituent material
. properties are either retrieved test data or computed from analysis on a smaller scale. Properties are
assigned to the material regions of the geometric model, and orientation geometry, such as bundle
center lines, are automatically created and linked with the solid constituents. Other geometric
modeling tools automatically match corresponding geometric entities to ensure model periodicity.
Automatic meshing works directly from the geometric model, and the analysis interface tools
automatically assign the material properties and periodic boundary conditions. This method of
constructing geometric and attribute models betore meshing gives the framework considerable
representative flexibility. Highly efficient solvers compute both homogenized properties (the
equivalent properties of the material at a larger scale) and stress concentration factors for later post-
processing. The classical mathematical homogenization theory for heterogeneous medium has been
generalized [12].for this application to account for eigenstrains.

Unit cell modeling has been used in the multi-scale computational technique and for non-linear
analysis with a plasticity model. Given a representative geometry, it can also predict linear elastic
properties for woven composites for use directly with conventional macro-scale analysis tools, and
can be readily adapted for thermal conductivity and chemical diffusion problems, e.g. for process




modeling. Parameterized unit cells for oriented fibers. periodic “random” fibers, “random™
particles. and 2D woven fabrics with cracks and voids have already been developed.

NUMERICAL MODEL DEVELOPMENT

Conversion of the engineering geometry to a finite element mesh is supported by automatic
mesh generation. mesh modification and facilities for structuring and storing mesh data. SCOREC
developed tools for automatic meshing of either 3D surfaces or volumes can be used [13]. The
automatic meshing tools have features which automatically control the numerical solution around
critical features or through the thickness of parts where the manufacturing or degradation processes
will cause layered variations in behaviors or micro structures. The automatic meshing works for
models on all scales. and are used for building periodic meshes of unit cells. Mesh modification
tools can be used to remove the effects of undesired small features created unintentionally by
geometric modelers, and were used for the crack propagation analysis [14]. Special mesh
modification capability was developed which adjusts the volume of a material region. This
capability is useful with unit cell models of meso scale weaves or micro scale reinforcements,
allowing the volume fraction to be adjusted directly through the mesh. In addition. this provided an
efficient means to study the sensitivity of overall properties to changes in volume fractions. .

ANALYSIS

The framework automatically constructs the input for analysis packages such as ABAQUS™
or specialized solvers by extracting the mesh data from the generic mesh database and the
associated material properties, loads and boundary conditions from the attribute structures. The
specializéd solvers include an iterative solver with multiple right-hand-sides, which is both time
and disk space efficient. The analysis efficiency is very useful for mechanism-based simulations,
where complex micro-structures such as weaves and/or non-linear behaviors require large
numerical models and/or many solution increments {15]. Efficient solutions for materials with
nonlinear history dependent behaviors have been addressed in [12] and [16].

The design and performance of a HTC component is often governed by the mechanical
behavior near highly stressed features, such as attachments. The seemingly straight forward
approach of explicitly modeling the composite microstructure throughout the component would
require computational resources far greater than available or needed. Unit cell or representative
volume approaches make the computations feasible but are based upon assumptions of periodicity
and uniformity of macroscopic fields, which are often not valid near critical features. To solve these
problems. special analysis tools and techniques were developed which automatically locate critical
areas and then coordinate and adapt the numerical models on multiple scales, so as to capture
failure processes down to the micro scale [17, 18].

The multi-scale technology has also been used to simulate the growth of a crack in a fibrous
composite [14], and the dominant factors affecting crack growth on the micromechanical level have
been investigated. Automatic tools were developed that explicitly represent the microstructure of
the composite at the crack front while using homogenized material properties elsewhere. A
significant difference in the crack growth pattern was found when the microstructure model was
incorporated into. the analysis. Crack propagation criteria in the microstructure was based on the
energy release rates, fracture toughnesses of the microconstituents and their interface.

The process modeling codes included in the framework simulate the time varying production,
or degradation, of composite materials. The analysis codes find the solution for models involving
the reaction and transport of chemical species and material flows. In the most basic applications,
designers can alter process parameters to improve production rates and/or minimize manufacturing




defects. Since the analysis code is interfaced with the framework tools. the opportunity exists for
designers to couple themomechanical and chemical process simulations to estimate processing
residual stresses or to simulate oxidation/hot corrosion for life prediction. Codes have been applied
to the reactive vapor infiltration process for forming MoSij from Mo powder, CVD fiber coating
with BAl,03, and for oxidation simulations of SiC composites {19-21]. Inputs for the general
analysis code are the initial geometry and mesh, process attributes per phase. and boundary
condition distributions as a function of time. Models input to the code are categorized as chemical
reaction models, expansion, mechanical models for solid phases. diffusion models of gaseous
phases. and surface models for phase interfaces. Error control parameters are given for the adaptive
refinement techniques. Outputs are the time varying volume change, shape, velocity, temperature,
concentration and pressure fields

POST PROCESSING

in nd visualization *
Post processx g a zation S!Proximify to Onset of Micro Structural Damcge
tools provided by the framework map * =

1 (% alloweble stress)
analysis results into behaviors and °-
graphics to aid interpretation and
understanding for design of mechanism-
based models. For linear elastic
analysis, initial brittle and plastic
material failure of fibrous composites due
to thermal-mechanical loading can be
graphically depicted by the software.
Debonding at the interfaces between the
fiber, coating and matrix, and fracture of
the fiber, coating or matrix materials are
predicted for symmetric laminated plate
configurations. The framework tools
provide the designer with an animated
“through the thickness” sequencing of
these micro scale failures at each
lamination, allowing interior-exterior
trends to be visualized. The software
implements the theory found in [16, 9.
22], by mapping macro scale FEA
temperatures and stress distributions onto : 3.0 i'y
the micro-mechanical failure map model. 3.0e+00 i
The model accounts for residual stress
effects due to a difference between a stress
free state, e.g. the processing temperature, and the operating temperature. The codes have been
applied to SiC/Ti MMCs and to a SiC/Al,05 woven CMC combustor housing with cooling holes
and other hardware features, and loaded by large thermal gradients. Overall thermal stresses
mapped to the fibrous scale result in the macro scale distribution shown in Figure 2 (top), where
shading indicates proximity to fiber/matrix debonding failure on the inner ply.

Post processing tools are also used to recover the critical micro scale behaviors in unit cell
models. The computational plasticity analysis tools described earlier rely on post-processing of the
strain histories stored for each critical macro scale element (Gauss point). In an example problem

Figure 2: Post processing of macro scale stress




using a SiC/Ti fibrous composite, the recovered sirain history was mapped to the micro scale,
showing fiber and matrix stresses and areas of permanent deformation around the linkage
connections {12]. The distribution of micro scale stresses are shown at the bottom of Figure 2.

INTEGRATION OF SOFTWARE TOOLS

Several features of the framework allow it to ultilize the software tools described earlier [1]. In
order to communicate with commercial packages. such as geometric modelers, framework tools
make queries and edit operations through a layer of generic operators. Each commercial code is
then interfaced to the rest of the system by a set of functions which translate the generic instruction
into the specific functions supported by the package. This avoids the need to customize a version of
each framework tool for each commercial package, or version of a package. Relational database
queries are specified in terms the SQL language, which performs a similar function. In order to
write generic operators and support multiple, possibly specialized tool capabilities, the essential
computational functions are abstracted, and the abstractions organized into type hierarchies.

Expertise in several areas, including material and process modeling, analysis techniques and
detailed software operation are needed for reliable HTC mechanism-based analysis and design. For
a given analysis goal desired by the user, the framework facilitates the sequencing of tools into
analysis strategies, the execution of which provides the desired results: From the user’s perspective,
the execution of the analysis goal is no more involved than using any other spreadsheet function,
requiring no expertise or involvement in software development. The current design parameters are
recovered from the spreadsheet, and transferred to the goal processor. If data is missing or out of
the applicabili.y range of available strategies, the user is informed of the specific problem,
otherwise the results are automatically computed and returned to the spreadsheet, used as input for
other analysis, or displayed.

CONCLUSION

High temperature composites have required progressively more complex micro-structures and
behavioral understanding. Supporting design requires analytical tools which can yield insight into
the underlying behaviors at multiple scales, are efficient to use, and which can be adapted to new
material configurations. Application of these tools has shown their usefulness in design.
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ABSTRACT

We develop a mathematical model for the oxidation of silicon carbide in a crack.
or pore. The model consists of a nonlinear partial differential system that is solved by
adaptive finite element software that automates many of the computational decisions.

1. INTRODUCTION

Oxidation shortens the life of ceramic matrix composites by, e.g., changing the
elastic properties of the medium, reducing bonding strength due to a loss of fiber coat-
ings, and weakening fibers through reaction [1-3]. Composite materials are protected
by coatings; however, cracks that form as a result of thermal or other loading may
expose the matrix and fibers to hostile environments. We present a model for the oxi-
dation of a cracked silicon carbide (SiC) matrix that is exposed to a hot gaseous mix-
ture of oxygen and water. The gases diffuse into the matrix and react with the SiC to
form a layer of silicon dioxide (Si0,) between the gaseous mixture and the SiC. The
oxidation proceeds into the composite at a rate that is controlled by the solid-state
diffusion of oxygen and/or water vapor in SiO;. Phase transformations due to the
oxidizing reactions are accompanied by a volume expansion that causes the viscous
SiO, to flow and fill the crack {1-3]. This may reduce damage to the composite. - The
model, consisting of a nonlinear partial differential system, is solved by adaptive finite
element software [4] with capabilities for unstructured mesh generation and combina-
tions of automatic mesh refinement/coarsening (h-refinement), method-order variation
(p-refinement), and mesh motion (r-refinement). Adaptivity helps control numerical
accuracy and track moving material boundaries; hence, it provides an effective tool for
solving “oxidation and related [5] composite fabrication problems. The model and its
solution by the adaptive software produce an efficient way to predict and understand
changes in the chemical, physical, and mechanical properties of composites that will
eventually lead to improved design and longer material life. :




2. OXIDATION MODEL

Following [2,3], we expose a SiC matrix to O, and H,O that are absorbed into
the matrix and react with SiC according to the overall reaction

3SiCs) + 504, = 3Si0, + COy + 2CO ), (1a)

SIC(S) + 3H20(g) -> Sl.OZ(‘) + CO(g) + 3H2(g)' (lb)

These reactions occur at the interface between SiC and SiO, with O, and H,0
diffusing through SiO, to reach the fronts.

The solid matrix consists of a mixture of reactants and products. Let the mass
m; (g) of chemical species / at time ¢ in a control volume ¥ be

m(t) = LpY,-dco, i=12-,7 Q)

where p is the density of the mixture, ¥; is the mass fraction of species i and dw is a
volume element. Indices of the seven species involved in the reactions are listed in
Table I. Considerations of mass conservation of species i yield
dm; . .
T=—-J'J,--ndc-J‘pY,-v-ndc+Lqidm, i=121, (3a)
5 - 5
where S is the boundary of ¥, n is a unit outer normal to S, d o is a surface element,
v is the mixture velocity, and g; and J; are, respectively, the mass production rate and
diffusive flux of species /. Assuming Fickian diffusion and regarding the position of
a material point x as a function of ¢ and its initial spatial location X, we have

v(X,t) = ﬂ;—"l, 3, = -D,V(pY,) (3b,c)

with D; being the diffusivity of species i in the mixture and V being the gradient
operator.

Applying the divergence theorem to (3a) while using (2) and (3¢) yields
d(pY})
dr

=V-D;V(pY;)-pY;V-v+gq;, xeQ), t>0, (4a)

where

d(pY;)  o(pY;)
&t ot

is the material derivative and Q(t) is the spatial region occupied by the medium at
time ¢.

+v-V(Y;), i=12,-,17, (4b)

Since mass production rates during high-temperature oxidation are much faster
than diffusive rates, we assume all reactions are irreversible, isothermal, and have
rates that are linear in each concentration to obtain

g1==-5w M|, q2=Qwi+w )My, q3=w\M;3, q4=-(3w+w)M,,




gs = Bwi+wMs, gg=-3wiMg, qq7=3w.M1 (Sa-g)

pY( ] [ ps pY, | { p¥s
wy=k{|— |—1» =k —1. i
L= [Ml ] {M4 Y2ER0 | | M (b,
The parameters &, and k, are the rate constants for rate-controlling steps in reactions

(1a,b) and M; denotes the molecular weight of species { = 1,2, -, 7 (cf. Table I).
Thus, pY;/M;, is the concentration of species i in mol/cm”.

where

Table I. Index and molecular weight M; (g) of species i.

S?CC!CS 02 co COZ SiC SiOz H20 Hz
i 1 2 3 4 5 6 7
M; 32 28 44 40 60 18 2

Assuming that a control volume ¥ contains only chemical constituents without
voids between the compounds, Adjerid et al. [5] show that
7
Voy=Y (g +V-DVpY], xeQ, t>0. ©)
i=l Pj
where p; is the theoretical density of species i. In typical situations, there is very lit-
tle free 0,, H,, H,0, CO, and CO, in the matrix; therefore, it is reasonable to
neglect the pY; terms on the right of (6) fori =1,2,3,6,7 Additionally, D4 and
D are negligible so (6) becomes
S, G
vov=3 & ™

i=4 Pi

The oxidizing reactions (1) are accompanied by nearly a 120% volume expan-
sion that induces forces on the matrix causing it to flow. We assume that the material
is capable of viscous deformation and describe its motion by the Navier-Stokes equa-
tions

pLL (L -V (] =V T (82)
¢t

where the traction matrix T has components

vy  Ov
TH = (_p + }“V V)SH + p‘(T— + _——)v k9 l = 11 2’ 39 (Sb)
ox;  Oxg

with A and p being Lamé parameters, p being the pressure, and &y being the
Kronecker delta.

Initially, the matrix only contains SiC; thus, the initial conditions are

0, i =4
Y, X,0) = 1, Q=4 i=12-,7 vX0)=0, p(X,O)-f-O. 9)




Boundary conditions prescribe the crack surface as traction free
T-n=0, xel, t>0. (10a)
On planes of symmertry and in the far field, we prescribe
va=0, nV[v-(v-mn]=0, D,;V(pY;)n=0, i=12 7.
(10b-d)

The rate of absorption and desorption of gaseous species i is assumed proportional to
the deviation of ¥; from its maximum solubility s; in Si0,, i = 1, 2, 3, 6, 7; thus,

DiV(eY) n=—;(x, ¥ -s;), i=1,2,3,6,7, xel, t>0, (l0e)

where I is the surface of the crack and ¢;(x,z) is a saturation function as described in
Section 3.
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Figure 1. A two-dimensional SiC matrix containing a crack.

3. APPLICATION

We consider an idealized crack in a two-dimensional SiC matrix (cf. Figure 1)
that is exposed to oxygen; thus, reaction (1b) is not present and H,O and H, are not
involved. With the geometry of Figure | and the specified reactants, we prescribe

. =0.075zA (x )[1 + tanh(10(x; — 2.5))], i =1,
6;(x,2) =10, i=6 (109)
0.5x 107z [1 + tanh(z x 10%)], i=2,3,7
where z = ¥; —s; and h(x,) is half of the thickness of the crack at horizontal coordi-
nate x;. The topmost equation simulates a decrease in flux as the crack width nar-
rows; the middle equation signifies that water vapor is not present in this example;

and the bottom equation is a sharp but continuous transition from no flux to a satura-
tion value.




A dimensionless version of the partial differential system (4, S, 7-10) is solved
using adaptive finite element software that has capabilities for automatic h-, p-, and/or
r-refinement [4,5]. Although p-refinement is very efficient [4], we use hr-refinement
with piecewise linear polynomials (p = 1). The r-refinement is used to follow evolv-
ing reaction zones and track the solid-gas interface as the matrix expands. The h-
refinement is used to increase solution resolution near sharp transitions. Adapuve h-
refinement is guided by two elemental error indicators: 1, is a mean-square average
of jumps in 8pY4/Om across the edges of element A and C, is a similar average of
jumps in the components of &v/én [6]. Letting 7j and C, respectively, denote averages
of n, and £, over all elements, we refine those elements where 1, > 1.87 or
s> 2.2C. A vertex is scheduled for coarsening when the error indicators on all ele-
ments containing it are less than 0.37 and 0.7C. When this occurs, the low-error ver-
tex is moved (‘‘collapsed’’) to its neighboring vertex having the largest interior angle.
This eliminates elements and coarsens the mesh. Badly shaped elements that may
result from r-refinement are eliminated by a combination of edge swapping (exchang-
ing the diagonal of the quadrilateral formed by two triangular elements) and vertex
collapsing [6]. The variable-step, variable-order time integration [4-6] was performed
with a temporal error tolerance of 10~ and was halted every five time steps to exam-
ine the error indicators and refine, coarsen, or move the mesh as necessary.

In order to overcome spurious pressure oscillations that arise in an (essentially)
incompressible medium, we introduce an ‘‘artificial compression”™ and solve

s -
82+V'V=Z'¥L (11a)
de i=4 Pj
instead of (7b). This stabilizes the viscous flow while not greatly affecting accuracy
when ¢ is small. We choose

ELZ
£ =
psD s

where L (= 0.7 wm) is the length of Q (cf. Figure 1), us is the viscosity of Si05, and
£ was selected as 1075,

(11b)

Dimensionless variables are obtained by scaling x by L, p by ps, ¢ by Dys(/L 2
and p by psL /gD s,). Using symmetry, we solve a problem on the upper half of
the matrix shown in Figure 1. Those parameter values available in the literarure [7] at
an operating temperature_of 1100°C are Dy = 6.6 x 10713, D¢ =3.6x10""" (m?s),
By = 3.2, ps =22 (glem?), and As = s = 1012 (Ns/m?). The remaining parameters
were estimated relative to these. For example, we selected A4 = 4 = 10" Ns/m? and
assumed that the Lamé parameters for the mixture varied linearly between their SiC
and SiO, values in the reaction zone; thus,

A=po=ps+ (kg - Hs)Y s : 12)
The higher values of the Lamé parameters for SiC simulate its greater stiffness (at
1100°C) relative to SiO,. The value of the reaction rate k, was selected as
2% 10%m3/s to ensure diffusion dominance. Increasing or decreasing this value
yielded similar results with sharper or more diffuse reaction zones, respectively. We
assumed that the diffusivity of CO and CO, in SiO, is faster than that of O, and
selected D, = D3 = 10"%7m2%/s. Finally, maximum solubility limits were chosen as
5 = 1073, i = 1,2, 3. Those parameters that remain unspecified are irrelevant to this
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Figure 2. Mass fraction of SiC at ¢ = 0.2, 1.77, and 3.6 min. Lighter shades indicate
a high concentration of SiC and darker ones indicate a low concentration.

application.

The concentration of SiC and the corresponding adaptive meshes at ¢ = 0.2,
1.77, 3.6 min are shown in Figure 2. In Figure 3, we show the pressure with velocity
vectors superimposed at ¢ = 3.6 min. The relative mass and volume changes
m(t)/m(0) — 1 and Q(z)/Q(0) ~ 1 appear as functions of ¢ in Figure 4. The oxidation




Figure 3. Pressure and velocity vectors at £ = 3.6 min with lighter shading indicating
higher pressures.
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Figure 4. Total relative mass (left) and volume (right) changes vs. time.

front advances into the SiC matrix and SiO, flows into the crack to ultimately close
it: thereby, reducing the gaseous diffusion into the matrix (cf. Figure 2). Figure 3
displays a qualitatively correct high pressure in the reaction zone and a flow of SiO,
into the crack. The meshes of Figure 2 indicate that the adaptive software is placing
fine meshes in the reaction zone where variables are changing rapidly while using
coarse meshes elsewhere. The results of Figure 4 agree with experimental results
[1,2] which predict that the system is diffusion-controlled; thus, indicating parabolic
mass and volume change rates. Densities approach their correct theoretical values
once reactions have passed.

4, DISCUSSION

We have developed a reaction-diffusion model to analyze the oxidation of
ceramic composites. When used with adaptive finite element software, the model-
predicted qualitatively correct chemical and mechanical behavior and quantitatively
correct mass gain. Our model displays 2 closing crack, which should inhibit




oxidation. We will integrate this software into an overall mechanism-based design
system (8] that will simplify future analyses. Computational results will be compared
with existing {1,2] and planned experiments.

Several improvements are possible. We are testing a model for the gaseous flow
in the crack that contains a combination of Fickian and Knudsen diffusion. We will
also include oxidation by H,0 as described herein. Coated and uncoated fibers will
be added to the matrix with their associated reaction and surface diffusion models.
Parameter studies will endeavor to determine how damage varies with crack geometry
and operating conditions. Solving contact problems as the crack closes is an essential
capability that must be developed. With this, elastic, visco-elastic, and/or visco-plastic
deformations should be investigated and possibly included in the mechanical model.
With these, it should be possible to predict the formation of cracks in the Si0, as oxi-
dation progresses and stress patterns change. Coupling these micro-scale models with
macro-mechanical models that anticipate the behavior of the composite structure are
also envisioned [8].
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ABSTRACT — The paper describes recent research conducted at Rensselaer aimed at modeling
and simulation of failure processes in composite materials and structures using micromechanical and
macromechanical approaches. The micromechanical approach is based on the mathematical homog-
enization theory with eigenstrains and a rapid post-processing procedure, which enables you to solve
large scale structural systems in heterogeneous media at a cost comparable to problems in homoge-
neous media without significantly compromising on solution accuracy. The building blocks of the
macromechanical approach are as follows: (i) enriching through-the-thickness kinematics of the shell
to compute 3D effects, (ii) simulation of the delamination growth by incorporating discontinuous
through-the-thickness interpolants. (iii) development delamination indicators to predict the critical
regions so that enriched shell elements would be used only when and where it is necessary to do so.
(iv) use of continuum damage mechanics approach to simulate evolution of delamination growth,
and (v) calibration of critical damage parameters at the interface against the fracture toughnesses.

MICROMECHANICAL APPROACH

The computational challenge of solving nonlinear heterogeneous systems is enormous. A solution of
large scale history-dependent nonlinear systems that provides an accurate resolution of local fields is
not feasible by means of the classical unit cell approach. For linear problems a unit cell or a represen-
tative volume problem has to be solved only once. whereas for nonlinear history dependent systems
the unit cell problem has to be solved at every increment and for each integration point. Moreover.
history data has to be updated at a number of integration points equal to the product of number of inte-
gration points at all modeling scales considered. To illustrate the computational complexity involved.
we consider elasto-plastic analysis of the two-scale composite flap problem shown in Figure 1. The
macrostructure is discretized with 788 tetrahedral elements (993 unknowns), whereas microstructure
is discretized with 98 elements in the fiber domain and 253 elements in the matrix domain. The CPU
time on a SPARC 10/51 for this problem was 7 hours, as opposed to 10 seconds if metal plastic-
ity was used instead. This means that 99.7% of CPU time is spent on constitutive equations. This
raises the question whether the observation made by Hill 30 years earlier stating that “... for nonlin-
ear systems the computations needed to establish any constitutive law are formidable indeed ..." is
still valid today. In the following we describe a novel modeling scheme based on mathematical ho-
mogenization theory with eigenstrains (5] and a rapid post-processing procedure, which enables the
solution of large scale structural systems in heterogeneous media at a cost comparable to problems
in homogeneous media without significantly compromising on solution accuracy.




(2) FE Mesh for the Nozzle Flap Problem (b) FE Mesh for the Unit Cell
Model

Figure 1: FE meshes for the Nozzle Flap Problem and the Unit Cell Model

We assume that the microstructure of a composite is periodic (Y-periodic) so that the homogenization
process can be performed in a unit cell domain. denoted by ©. Thus, the response functions, such as
displacements and stresses, are also periodic. Let x be a macroscopic coordinate vector and v = x/s
be a microscopic position vector. s is a small parameter representing the ratio between the scales. For
any Y-periodic function f*(x) = f(x. v(x)). the indirect macroscopic spatial derivatives of 2 can be
calculated by the chain rule as

L0 = Fae3) + 2 Fyley m

where subscripts followed by a comma denote partial derivatives with respect to the subscript vari-
ables (i.e.. f3 = df°*/ax;).

In modeling a heterogeneous medium, micro-constituents are assumed to possess homogeneous prop-
erties and satisfy the set of continuum mechanics equations
3 —_ 3 3 3 s _,9
Gijx, +0i =0, O;; = Liju(€y — Kiy). &ij = Wix,) (2)
and the appropriate boundary and interface conditions. In (2), a;; and €]; are stress and strain tensors;
Lij« and u7; are elastic stiffness and eigenstrain tensors. respectively; b; is a body force: u; denotes

a displacement vector; the subscript pair with parenthesis denotes the symmetric gradient defined as

u(gi--",') = (u"sv-\',' +uj»x,-)/2'




The displacement «(x) and eigenstrain uf,(x). subsequently denoted by u;(x.y) and W;;{x.v). are
approximated by the double scale asymptotic expansions:

1

wix.v) = u?(.t._\')-&su, 0

(e.x) -0 e y) =y (xy) +5u},(x.)') +---
Expansion for strain and stress tensors can be obtained by manipulating the above expansions and (2)
with consideration of the indirect differentiation rule (1):

1 _
gi(xy) = ;-Sijl(x._\‘)-FE?j(.t._\‘)+5€}j(.r.}‘)+'-- (3)

-1

1
0',-,-(.\:._\') x ; Gl/

(x.¥) -+-0'?j(x._\') +50'?j(x.y) + - {4)

The stress and strain tensors are related by the following constitutive rules:

Gi_jl :L]]klsk_[l, 0{,-:[.,']'“(8;1—“21) where r=0.1.-- (5)

Substituting equation (5) into the equilibrium equation in (2). a set of equilibrium equations for vari-
ous orders of s can be obtained. From the lowest order O(s~?2) of equilibrium equation, we get u? =
u¥(x). Considering the O(s~!) equilibrium equation with arbitrary macroscopic strain and eigen-
strain fields. and using the separation of variables for macroscopic and microscopic quantities yields

the following two governing equations in ©:

(6)

{Lijkl(akm51n+‘yklmn)}__v/ = 0
(LijiWhimn).x din = (Lijhty) s, = 0 )

where 8,,, is the Kronecker delta, db, is a macroscopic portion of the solution resulting from eigen-
strains and W/ mn is related to the elastic strain concentration factor Ay, such that for the case of
zero eigenstrain, the microscopic strain can be written in terms of the overall strain ,,, as follows:

- 1
€t = Aumn Emn  and  Aypmn = E(Skmsln + 84ndim) + Yitmn (8)

In the following, we will adopt a matrix notation such that A is the matrix notation of Ay mn. Equa-
tion (6) is the standard linear unit cell equation [2] subjected to periodic boundary conditions that can
be solved in ©. Finite element methods can be used for calculating ¥ [6]. The elastic homogenized
stiffness tensor L follows from the O(s%) equilibrium equation and is given as:

1

LE@

/LAdG): L/ ATLAJO 9)
) ©Jo

in which |@] is the volume of a unit cell.

After solving equation (7), we obtain a closed form expression for d*, and thus the O(so) approxima-
tion to asymptotic strain field (3) reduces to € = A& + Wd*. Again. using the separation of variables
for eigenstrains, the asymptotic expansion of the strain field (3) can be expressed as follows:

N,
g(x.y) = A(Y)E(x) + 3, Dy(y)Hy(x) (10)
n=1




in which Dy () are the eigenstrain influence functions given in terms of strain concentration function
Wiv) as follows:
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Finally, the macroscopic equilibrium can be obtained as
i . 1
G,-,-,,}+b,~:0. G,‘j:@/(:)o'?jd@ (12)

Consider a composite medium consisting of two phases. matrix and reinforcement. with respective
volume fractions ¢, and ¢, where subscripts m and f represent matrix and reinforcement phases.

respectively. Assuming that the eigenstrain is uniformly distributed within each phase, equation (10)
can be reduced to

E,-:A,-é-i—Dm,}J.m-{-D,-fp.f, r=m.f (13)

in which A, is the phase concentration factors and D,, can be expressed in terms of the phase stiff-
nesses and concentration factors [3, 3].

We consider an anisotropic reinforcement material which remains elastic throughout the loading his-
tory and an elasto-plastic matrix phase with isotropic elastic properties. Thus, the phase eigenstrains
can be expressed as U, = E?- and p,, = €}, + €2 where €, is the matrix plastic strain and €% (where
r=m. f) is the phase thermal strain. For a known temperature distribution. eisa prescribed quan-
tity depending on the phase thermal expansion tensor m,. Also, we assume that all the elastic moduli
are not functions of temperature; thus, the concentration factors and eigenstrain influence functions
are constant matrices.

In order to maintain a quadratic rate of convergence for the Newton's method, the formation of a
tangent stiffness matrix that is consistent with the integration procedure employed is required. The
rate form of the constitutive equation can be written in terms of the consistent tangent operators 2
(5] and D as

& =Dé+06 (14)
in which
s
D:CfD/"+‘Crn:Drrn 0= - Z(CQOr+Cfor) m,

where
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and 8 is the temperature rate; I and P are the identity and projection matrices; A}, is the normal to
the yield surface: H. B and G, are material constants.
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Figure 2: Unit Cell Relative Error for Effective Stress

The overall analysis procedure is divided into two stages. In the first stage. a nonlinear composite
structural problem is solved using a finite element method based on the two-pointaveraging approach
developed in previous sections. The macroscopic analysis of the composite structure is then carried
out and the macroscopic strain histories are stored in a history database at Gaussian points in the
critical regions. In the second stage. the microstress distribution in © is sought. The strain history
at macroscopic Gaussian points for critical regions is extracted from the database. Subsequently. the
macroscopic strain history is applied to the unit cell through the incremental homogenization pro-
. cedure discussed in [S]. Since the micro-history recovery is performed only at a select number of
Gaussian points of interest without affecting macroscopic analysis. the computational cost is low.

For the flap problem considered in Figure | the CPU time for the averaging scheme with variational
micro-history recovery is only 30 seconds on a SPARC 10/51 as opposed to 7 hours using classical
mathematical homogenization theory. The memory requirement ratio for these two approaches is
roughly 1:250. Figure 2 shows that the maximum error in the micro-stress in the unit cell located in
two critical locations is only 3% in comparison to the maximum error in the classical mathematical
homogenization theory.

MACROMECHANICAL APPROACH

Composite laminates are prone to wide range of damage, such as matrix cracking, fracture of fibers,
fiber-matrix debonding and delamination. In the previous section we attempted to describe the mi-
crostructure of a composite in detail and to develop fast homogenization techniques. In this section
we adopt a macromechanical description that views composite as homogeneous anisotropic medium.
Our primary objective here is to develop computationally efficient macromechanical progressive dam-
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age modeling capabilities and to embed those within the framework of commercial finite element
code. The following subtasks and limitations have been identified:

e Evolution of delamination should be modeled using rigorous fracture mechanics philosophy.
At the same time, for the large scale problems considered. such as the composite fan blade
subjected to impact loading, it is not feasible to continuously remesh the component under
consideration at every time/load step.

e 3D effects should be captured in the vicinity of the boundary layers, although the use of 3D
elements should be avoided due to the computational cost involved.

¢ Micromechanical failure modes should be accurately predicted, but the use of unit cells or rep-
resentative volume elements is not desired due to the computational cost involved.

To meet these objectives the following strategy has been devised:

e Compute the 3D effects by enriching through-the-thickness kinematics of the shell with quadratic
modes as shown in Figure 3.

e Simulate the delamination by incorporating discontinuous through-the-thickness interpolants
to enrich the set of the element shape functions. The kinematics of the enriched shell element
is summarized in Figure 3. The strain field within the process layer is obtained as ratio between
the displacement jump and the thickness of the process layer.

e Use the continuum damage mechanics approach pioneered by Kachanov [7] to simulate evo-
lution of delamination growth in the process layer [1. 9], but calibrate the critical damage pa-
rameters at the interface against the fracture toughnesses as follows:

Gi=tYS  i=LILII

where G is mode i fracture toughness. Y the critical continuum energy release rate, and  the
thickness of the process layer.

o Develop delamination indicators to predict the critical regions so that enriched shell elements
would be used only when and where it is necessary to do so. The formulation of delamination
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indicator is based on estimating whether it is necessary to locally enrich the formulation of the
shell element with a discontinuous displacement mode (ddm), i.e..

uennched' - ushell + \Fddm B

where W¥4™ is a shape function for discontinuous displacement mode and B its amplitude. The
value of B is determined by solving a local discrete problem with  as a single unknown keeping
the nodal solution fixed. The value of P is estimated at each node and for each interface. The
delamination will most likely occur in those layers and nodes where incorporation of the jump
mode results in the maximum change in energy. This philosophy resembles the concept of
-energy release rate. A similar strategy has been employed for hierarchical error estimation in
laminated shells [4].

The final product that has been developed and implemented in ABAQUS is a 15 degrees-of-freedom
per node hierarchical shell element which includes: 6 degrees-of-freedom to simulate classical shell
modes, 3 quadratic modes for 3D effects, 6 jump modes to simulate mode I, II, III fracture. In absence
of delamination. the element has an identical formulation to that of the Assumed Natural Strain shell
element [8].

Figure 4 shows the comparison between the numericat simulation and the experimental data in four-
point bend test. The plate has been modeled with 10 by 10 shell elements. It can be seen that the
critical load is 4.7 KN when delamination in the mid-layer has been observed. Numerical results
have been found to be in good agreement with experimental measurements.

The next example shows the simulation of a Foreign Object Damage (FOD) test. During the test. a
cylindrical gelatin projectile is fired at a composite panel using a large gas gun. Figure 5 shows the
deformed finite element mesh of half of the panel after impact. Numerical results agreed well with
experimental measurements.

SUMMARY

Two approaches for modeling inelastic behavior of heterogeneous materials have been describes.
The micromechanical approach, which models composite material on the scale of heterogeneity, and




the macromechanical approach. which views the composite as anisotropic homogeneous media. Qur
micromechanical approach is based on the mathematical homogenization theory with eigenstrains
and a rapid post-processing scheme. It provides a comparable accuracy to the classical theory but
at a fraction of computational cost. For the numerical example considered, the speedup factor was
over three orders of magnitude as compared to the classical theory, whereas the maximum error in
stresses was less than 3%. The macromechanical approach presented here is based on higher order
shell theory with built in discontinuous through-the-thickness interpolants, delamination indicators,
and damage mechanics approach calibrated to fracture mechanics. Numerical examples in four point
bending test and FOD panel problems agreed well with experimental data.
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DYNAMIC AND TRANSIENT CHARACTERIZATION OF
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ABSTRACT

Ceramic fibers at elevated temperatures exhibit time or frequency
dependent mechanical behavior, the most studied of which is creep.
Several techniques for characterizing time dependent mechanical
properties have been developed in this laboratory. Fibers studied to date
include single crystal alumina, YAG, and seven compositions of SiC.
Dynamic mechanical spectroscopy methods are used to examine short
relaxation time processes associated with periodic deformation
phenomena, and provide both dynamic modulus and loss factor versus
temperature (to 1600°C) and frequency (from 0.1 to 25 Hz). Pulsed
periodic creep and recovery tests are used to examine the longer
relaxation time phenomena, and provide an accelerated means to
identify and separate anelastic and inelastic creep rates. Taken
together these methods provide a comprehensive understanding of the
multiplicity of mechanisms and time scales that are relevant to the
proper application and design of ceramic fiber reinforced composites.

INTRODUCTION

The analysis of the potential performance of high temperature
composite materials and the design of components made from such
materials requires detailed information about the constituents of the
composite. It is well known that ceramic fibers exhibit high
temperature behavior which is time-dependent, i.e., not entirely elastic.
In order to gain a more complete understanding of the behavior of
ceramic fibers at elevated temperatures and to provide a database for
the engineering analysis of composites using these fibers as a
reinforcement phase, this laboratory has investigated single fiber
behavior using a variety of techniques. In this paper, a periodic creep
and recovery technique [1] is utilized for the investigation of the
viscoelastic properties of ceramic fibers.




BACKGROUND

Materials scientists and engineers commonly use creep testing as a
primary means to characterize long term high temperature behavior
under applied loads. Generally, creep strain can include elastic,
anelastic (viscoelastic) and inelastic (plastic) strain components. Refer
to Figure 1 for a schematic of a creep and recovery test. The elastic
contribution to a given creep strain is readily measured by simply
removing the sample load and observing the incremental strain change.
Decomposition of the remaining strain into anelastic and inelastic
strains can be a challenging task, however. In general, given only a
creep curve (strain vs. time) it is not possible to determine what fraction
of the strain is anelastic and what fraction inelastic. This determination
can be done only by performing a recovery test in which the (recovering)
strain vs. time is observed following the removal of the load. The
difficulty lies in the fact that as a rule, creep recovery is much slower
than creep itself. Presumably, this is because Creep recovery occurs
with no externally applied load, and given any sort of activated rate
theory for the processes involved, the reverse (recovery) process would
be expected to involve a higher activation barrier than for the (forward)
creep process itself. As a general rule, full recovery of anelastic strains
can take as much as ten times longer than the creep itself. Thus a one
month creep test might take ten months to fully recover if the strains
were entirely anelastic. Clearly, the decomposition of a creep curve into
anelastic and inelastic components would involve a series of creep tests
for various times, each of which is followed by a longer recovery process.
In this way, a long term creep curve could be decomposed into its
component anelastic and inelastic strains. From both a mechanistic
and design viewpoint, this decomposition is essential. As a corollary, it
follows that the measurement of plastic strain rates from a single creep
curve is potentially misleading since there would be no basis by which to
judge the anelastic (time dependent but recoverable) strains. It is
emphasized that the shape of the creep curve (e.g., constant rate) is a
very misleading and poor delineator of whether the strain is inelastic or
anelastic (or both), as discussed below.

There is evidence in the literature that ceramic fibers do exhibit
surprising amounts of anelastic strain. An important observation is
given by DiCarlo [2] who performed a creep test on a silicon carbide fiber
(SCS-6), followed prudently by an accelerated recovery test at a higher
temperature. The creep test was done at 1275°C and 612 MPa, and
followed by recovery at 1450°C. Nearly complete recovery was
obtained which suggests that the creep curve was primarily anelastic.




Additional creep and recovery tests for short time periods have been
reported by Lara-Curzio [3].
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Figure 1: Loading history and strain response for a typical creep and recovery test.

Guidance regarding the shape of a creep curve which is anelastic can be
obtained directly from the theory of linear viscoelasticity (which is not to
say that all anelastic processes are linear processes). Anelasticity can
be represented by a series of recoverable strains each with a
characteristic retardation time, or differently stated, an anelastic
process can be represented by its corresponding distribution (or
spectrum) of retardation times. For each retardation time, 63% of the
anelastic strain component is obtained after a load application for a
time equal to one retardation time. It becomes obvious then, that the
shape of an anelastic creep curve is dependent on the distribution of
retardation times characterizing the creep process. Without additional
information, it becomes clear why the shape of the creep curve is a very
poor determination of whether the creep is anelastic or inelastic. It
follows that a recovery curve of 100 seconds, for example, may fully
recover anelastic strains with 10 second or less retardation times, but
would not recover any appreciable amount of anelastic strains having
retardation times of longer than 1000 seconds. It is for this reason that
we noted earlier that the decomposition of a creep curve into its
anelastic and inelastic components requires a series of recovery tests,
conducted for several creep times, and not a single recovery test.

Mathematically related to the distribution of retardation times is
another distribution referred to as the distribution of relaxation times,
which 1s useful in describing anelastic processes such as stress
relaxation or dynamic modulus. Initially, this laboratory engaged in




dynamic mechanical modulus studies on single ceramic fibers at
elevated temperatures, as described elsewhere (4]. In that method a
fiber is subjected to a sinusoidally varying displacement and the
resulting load measured (without averaging or filtering). The load and
displacement signals are then fast Fourier transformed (FFT) to obtain
the component of force in-phase and out-of-phase with the
displacement, providing ultimately the real (in-phase or storage or
elastic) modulus and the imaginary (out-of-phase or loss or viscous)
modulus.

While the real and imaginary components of modulus provide equivalent
information on the anelastic processes as does a creep/creep recovery
test, they do so at a far different time scale. Dynamic measurements
typically emphasize short time scale processes (e.g., relaxation times of
milliseconds or less) while creep/recovery tests provide information on
long time scale processes (typically retardation times of seconds to
years). Thus, the two methods of measurement are complementary and
provide a broad picture of material anelastic behavior over many
decades of time scale. However, the dynamic modulus measurement
method, being intrinsically periodic with a short time scale, quickly
reaches steady state, whereas the creep/recovery method being
transient, and specifically not periodic, never indicates steady state
behavior. A perspective now emerges on the difficulties involved in
anelastic/inelastic decomposition of creep and recovery data. The
problem of reconstruction of a creep curve into its underlying component
anelastic vs. time and inelastic vs. time creep curves is the basis of the
test method described here.

PULSED PERIODIC CREEP AND RECOVERY TESTING

One of the useful features of the dynamic test method is its periodic
nature, which enables one to quickly establish steady state behavior.
The test method utilized here combines the attributes of a periodic test
while still offering the benefits of transient (creep) testing which
emphasizes long time processes. Referring to Figure 2, consider a test
protocol in which a load is periodically applied to a sample for a period of
time t] and then removed for some period of time (tp - t1) and then the
entire cycle repeated every tp seconds, where tp is the "period."
Further, let the strain at the end of each loading cycle be measured, as

well as the strain at the end of each recovery cycle, as shown by the
arrows in Figure 2.

This test is implemented using the apparatus described elsewhere [4] for _'

dynamic modulus testing, but modified with a stiff closed-loop control




system and computer which generates the periodic program shown in
Figure 2 and provides for automatic data acquisition. In practice, the
load application or removal is done in less than 2 milliseconds without
overshoot or ringing, and is made possible by a very stiff and well tuned
servo. Data acquisition is done using 18 bit D/A conversion which 1s
required for the high accuracy needed to implement the periodic pulse
test. Precision timing for the pulse test history and data acquisition is
done in hardware using a 6 MHz crystal, 64 bit pulse counter and
interrupt generator. This provides for very precise and reproducible
pulse cycles and data acquisition. Cycle periods from 0.5 seconds to
days are readily obtained and the number of cycles is limitless, since the
data is routinely written to hard disk. The parabolic temperature profile
of the fiber testing device requires deconvolution of isothermal strain
data from the measured displacements by simple calculations described
by Feldman and Bahder [5]. A creep activation energy of 580 kd/mol
was found by true isothermal creep testing of CVD SiC fibers by Lara-
Curzio [3], and is supported by DiCarlo [2] for testing under similar
conditions as used in the present study.
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Figure 2: Loading history and strain measurement for pulsed periodic creep and
recovery testing. Strain measured at (ktp)’, k=1..N and (ktp +t])", k=0...(N-1).

From the theory of linear viscoelasticity, it can be shown that the
history described in Figure 2 produces a slowly accumulating peak
strain (the strain measured at the end of each loading cycle) and slowly
accumulating recovery strain, with the rate of accumulation being
strongly dependent on the ratio of the test time parameters (t1, tp)
relative to the retardation times of the material. The mathematics will
not be presented here. Suffice it to say that anelastic creep processes
having retardation times substantially longer than tp are effectively
"filtered" in that they never get activated (occur) during the loading
cycle, while the processes having retardation times shorter or equivaient
to tp are largely recovered after each recovery cycle and therefore do not
accumulate as they would if the load were maintained as in a single
creep test (without periodic recovery). In effect, the pulsed periodic
creep test will always produce less anelastic strain (for a given




accumulated time under load, that is t1 times the number of cycles)
than a single creep test of the same time under load. It follows that the
resultant "creep curve," that is peak strain vs. accumulated time under
load will always be a better representation of the inelastic strain process
(if any) than a single creep test. These predictions are fully justified by
the experimental results to date, as described below.

RESULTS AND DISCUSSION

Figure 3 shows a comparison between the creep strain developed during
a conventional creep test and the peak strain achieved in a pulsed
periodic creep test, the latter plotted vs. accumulated time under load.
The pulsed data were obtained for a duty cycle consisting of t1 = 10 sec.
and tp = 30 sec. Also shown is a single strain point obtained after 9600
seconds of recovery for the single creep test sample. The amount of
recovery is large and shows that most of the creep strain which occurred
after 4600 seconds was in fact anelastic, not inelastic.
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Figure 3: Comparison of Pulse Testing with Single Creep and Recovery test.
Testing conducted at 200 MPa, 1600°C, 480 cycles (10 sec. load on, 20 sec. load off)
versus 4800 sec. creep, 9600 sec. recovery.

As expected, the pulsed periodic results lie between the single creep
results and the recovered strain value. Additional experiments on the
effects of various duty cycles (t] and tp values, both as a ratio and
absolute values) are currently being performed. While the recovery time
to load time for the pulsed periodic test was only 2 to 1 there is still
clearly a major reduction in accumulating anelastic strain. While it
would be tempting to claim that the slope of the pulsed periodic creep
results vs. accumulated loading time is in fact the inelastic (plastic)
strain rate, this would be premature, since other duty cycles with longer
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recovery to load ratios than 2/1 are required for better suppression of
the anelastic strain. Nonetheless, we claim that the slope of the pulsed
periodic results is closer to the true inelastic creep rate than the single
creep test slope, which is clearly much larger.

The effect of stress magnitude on the pulsed periodic creep test is shown
in Figure 4 for SCS-6 fibers at 1600°C, and it is seen that the creep
process is nonlinear, as is also concluded from single cycle creep test
data. Finally, the effect of cycle time at constant duty cycle ratio (2/1)
is shown in Figure 5, where it is seen that the results for 15 and 30
second periods are virtually indistinguishable. In conclusion, it appears
that the pulsed periodic creep test provides a method whereby the
inelastic strain rate may be measured with higher accuracy and more
quickly than with single cycle creep tests. Anelastic creep in ceramic
fibers at elevated temperatures is surprisingly large in magnitude and
covers wide time scales, and therefore significantly affects the slope of a
single cycle creep curve, rendering the measurement of inelastic strain
rates difficult if not impossible from such a test. The technique used in

this study may provide an accelerated and more time efficient method ,
for determining inelastic creep rates.
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ABSTRACT

Powder processing techniques have been used to prepare monolithic and
composite samples in two silicide systems: Cr;Si and MoSiz. Two Mo-modified
Cr;Si compounds were consolidated from prealloyed powders, as were composites
reinforced either with Pt alloy fibers or Saphikon (alumina) whiskers. Composites
of MoSi,, reinforced with SiC particles or particles plus whiskers, were
consolidated by reactive sintering. Physical and mechanical properties of both
systems, together with oxidation data for Cr;Si and its composites also are
reported. '

INTRODUCTION

Intermetallic compounds, including several aluminides and silicides, offer
an attractive combination of properties for high temperature structural
applications. These include high melting points, low densities and excellent
oxidation resistance compared to nickel-base superalloys. However, poor fracture
resistance remains as the principal obstacle to commercialization of these
compounds. A common approach to improving toughness has been to reinforce
these compounds with ductile metal fibers, but the resulting composites usually
display much lower creep and oxidation resistance, even when toughening is
achieved. [1-3]. An alternative approach has been to utilize ceramic
reinforcements, but these often are incompatible with the matrix due to low
thermal expansion coefficients of the former.[4] In the present work, it was
decided to experiment with ductile fibers with good oxidation resistance, namely
platinum alloy fibers, to reinforce two modified Cr;Si alloys that have been shown
to have excellent oxidation resistance themselves. Of course, this is considered to
be a model system because of the high cost of the fibers. In the case of MoSi,, the




focus of the research has been on lowering the cost and improving the purity of
composites by utilizing reactive sintering of elemental powders. For both alloy
systems, uniaxial hot pressing was employed as a lower cost alternative to hot
isostatic pressing.

EXPERIMENTAL MATERIALS AND PROCEDURES

CrsSi: Two Cr;Si alloys, IM939, which contains Mo and W, and IM945, which
contains only Mo, were studied; compositions appear in Table 1. The alloys were
induction melted under argon, then crushed and milled to about 3 micron diameter
powder. Hot pressing was carried out in graphite dies using a step-wise increase in
temperature and pressure to 1400°C and 38MPa, respectively. The coin shaped
samples were then furnace cooled at a rate of 4°C per min.

Two types of reinforcements were used: 100 micron dia. Saphikon fibers,
Smm long, and continuous Pt-6Rh alloy fibers with 0.5mm dia. Typical volume
fractions were 15%, except when the two reinforcements were present
simultaneously; the volume fractions of each were then 10%.

Toughness was measured at room temperature by the hardness indentation
method and at room temperature and elevated temperatures by notch bending. For
the latter, flat specimens 24x6x3mm were used. Flexural strength and elastic
moduli were calculated from the load-displacement curves for three-point
unnotched bend samples. Limited oxidation testing was done in air at 1250 and
1400°C on specimens from monolithic and Pt-6Rh-reinforced IM945.

TABLE I CHEMICAL COMPOSITION OF THE Cr;Si ALLOYS (a%)

Alloy | Cr [ Mo | W | Si
IM939 48.28 15.62 5.18 30.92
IM945 50.54 13.40 - 36.05

MoSi;: MoSi;, MoSi, + 30v/o SiC particles, and MoSi, + 30v/o SiC particles +
10v/o SiC whiskers were produced using elemental powders, except for the
whiskers. The diameters of starting particles were 3-7 microns for Mo, 4-6
microns for Si and 48 microns for C. Two mixtures were made, one of Mo + Si
and one of Si + C, and combined in the desired stoichiometric proportions. SiC
whiskers were added in the desired amount The mixtures were placed in an
Impandix Turbula mixer for 60 minutes and placed in a desiccator for 24 hours to
remove as much absorbed moisture as possible. The powders were loosely set in a
graphite mold with a BN mold release and the mold was then placed in the furnace
with no initial pressure applied. The furnace was evacuated for 15 minutes and then
put under positive pressure with argon. The furnace was then heated at a rate of
15°C/min with loads applied in steps. A pressure drop at 1395°C indicated when
the reaction between the silicon and molybdenum occurred. The pressure was
applied in steps. Once the furnace reached a temperature of 1400°C the pressure
was left at 59 MPa for three hours to densify the material. After three hours the
sample was furnace cooled at a rate of 4°C/min.




FESULTS AND DISCUSSION

—

Cr.Si: The microstructure of consolidated IM945 is shown in Fig. 1a, while that of
a composite reinforced with Pt-6Rh is shown in Fig. 1b. Note that the alloy fiber is
broken up by the pressure exerted during hot pressing, but that no cracks from
thermal mismatch are observed. However, when Saphikon is used, Fig. 1c, cracks
often are seen around the fibers.

Elastic moduli data for the alloys and composites are shown in Fig. 2.
General trends reveal that stiffness is not strongly affected by the presence of
reinforcements; rather, temperature plays a dominant role. These moduli are much
higher than what has been reported by Shah and Anton on A1,03 fiber reinforced
Cr3Si composite [5] '

Results of toughness tests are shown in Table II. The results show a
significantly higher toughness for the reinforced samples at elevated temperatures,
while room temperature values are not significantly affected. The increase at high
temperature is attributed to the combined increase in matrix ductility as well as
retained strength of the Saphikon fibers.
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Two notched samples of IM945+Al

14.5 and 22 MPam'?. One sample

203 were tested at 1100°C resulting in Kq's of
of IM945+A1,05;+Pt6Rh was also tested at

1100°C giving a toughness of 12 MPam"?. For other high temperature
intermetallic systems, Kq values, at room temperature, of 1.5 and 3.3 MPam'?
have been recently reported for monolithic CrNb and 25% vol.% Nb/Cr,Nb
composite, respectively [6]. In the same work, Kq values of 2.5 to 5 MPam"?
have been reported for monolithic NbsSi; and 20 vol.% Nb/NbsSi; composite,
respectively [6]. For the same system, i.e., niobium silicide-base in situ composites
Kq values of 12.8 to 16.4 MPam"? were reported for Nb-16.5Si and Nb-40Ti-
15Si-Al, respectively [7].
TABLE [I. SUMMARY OF HARDNESS AND TOUGHNESS OF IM939
AND IM945 COMPOSITES AT ROOM TEMPERATURE AND AT 1100°C

25°C 1100°C
Hardness Toughness | Bending Toughness | Bending Toughness
IM939 unreinf 1160 kg/mm? '
5.5 MPa m"”
IM945 unreinf 1055 kg/mm?
5 MPa m"”? 2.9 MPa m'?
IM945 Pt6Rh 3.6 MPam'”
IM945A1,0; 2.7 MPa m'? 18.3 MPa m"**
IM945 2.2 MPam"™ 12 MPa m"?
Pt6Rh/AL,Os
AlLO:; fiber 2000 kg/mm?
9.3 MPa m'?

(*average)




Figure 3 shows the fracture strength of the various composites over a
range of temperatures. Remarkably, the failure strength at 1000°C and 1100°C can
significantly increase from the room temperature value due to the inclusion of
fibers.
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Fig. 3. Fracture strength vs. temperature for IM945 and IM939 silicides.

The load-displacement curves for three point unnotched bending specimens
at room temperature for IM939 and IM945 were essentially linear prior to failure.
Similar behavior was observed in Saphikon reinforced IM939 and IM945 at room
temperature. The Saphikon reinforced IM945 shows some non-linearity at 1000°C
and 1100°C, respectively. The load-displacement tests for IM939 reinforced with
Saphikon at 1100°C exhibited limited ductility. The Pt6Rh reinforced IM945
showed limited ductility at temperatures below 800°C and did not fail at 1100°C.
At this temperature deformation continues until the fixture prevents further
deflection. The further inclusion of Pt6Rh with Saphikon also shows significant
non-linearity in IM945 at 1100°C. All strength results are based on assumed linear
elastic behavior; where this assumption is obviously violated, no value is reported.
The fracture surfaces of IM945 specimens tested at room temperature exhibited a
predominantly transgranular brittle failure

The results of the limited oxidation studies of IM945 reinforced with PtéRh
at 1400°C, as weight change vs. time are given in Fig.4. One observes weight gain
followed by a continuous weight loss. This behavior is explained by the formation
of Cr,05 and its subsequent change to CrOjs as a result of vaporization.

As was reported earlier for a similar intermetallic, one may expect the
saturation of the weight change curve, after longer times, due to the formation of
protective SiO, [10]. However, such an assumption should be experimentally
verified with long time oxidation tests. At 1250°C and under cyclic oxidation
conditions, both alloys showed nearly no weight change in 250 hours at 1250°C.
An oxidation test at 500°C for 500h on IM945 showed that this material does not
suffer from the well known "pest" phenomenon.
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MoSi;: Samples were extracted from the mold with a very high yield, and used as
is, with minor polishing. The MoSi,, MoSi; + 30v/o SiC particles, and MoSi, +
30v/0-SiC particles + 10v/o SiC whiskers samples had densities of 97.10%,
99.59%, and 98.35% respectively. Micrographs in Figs. 5a)-c) demonstrate the
density and grain size of the MoSi;, and its composites.

Hardnesses of the intermetallic and composites are shown in Table III. As
can be seen from Fig. 5 monolithic MoSi, and the composites showed grain
boundary pinning from the SiC particles and whiskers and no SiO; at the grain
boundaries, a problem that has plagued prior studies of MoSi; fabrication. Very
little porosity is evident in the MoSi, sample while MoSi, + 30v/o SiC particles
and MoSi, + 30v/o SiC particles + 10v/o SiC whiskers samples showed even less
porosity.

TABLE III: GRAIN SIZE AND HARDNESS OF MONOLITHIC MOSi,
AND MOSi; MATRIX

| Hardness (VHN) | Grain Size (um)
MoSi, 1060 5.0
MoSi, and 30v/o SiC Particles 1125 5.6 (in islands)
2.5 (between SiC particles)
MoSi, and 30v/o SiC Particles 1100 2.0-5.0 (between SiC
and 10v/o SiC Whiskers particles and whiskers)
<1 in island

The high temperature strength of reinforced MoSi, increased until 1200°C,
Fig. 6, indicating some effect from the smaller grains and cleaner product. With
the inclusion of both SiC particles and whiskers in the MoSi, + 30v/o SiC particles
+ 10v/o SiC whiskers sample it is thought that the total volume of reinforcement
accounts for the improved high temperature properties. Both matrices reinforced
with SiC showed improved fracture stress at elevated temperatures, with MoSi, +
30v/o SiC particles + 10v/o SiC whiskers showing less improvement. This could
be due to a critical reinforcement volume. Whiskers that were added to the MoSi,




matrix showed no signs of being broken during processing because of the low
processing pressures, less than 60 MPa. Samples with 30v/o SiC particles and
10v/o SiC whiskers showed the best high temperature modulus possibly due to the
SiC absorbing the bulk of the load and the inclusion of the directionally
strengthening SiC whiskers. These whiskers could not be added to the MoSt,
matrix independent from the SiC particles due to the coefficient of thermal
expansion mismatch. This resulted in matrix cracking during processing.

SUMMARY AND CONCLUSIONS

Fully dense Cr:Si alloys and their composites can be made by hot pressing
of prealioved powders. Dense MoSi; and composites can be produced by reactive
hot pressing of elemental powders. Preliminary mechanical property and oxi:dation
data for Cr:Si show that this is a suitable alloy system for further development.
The McSi> composites show some improved properties relative to unreinforced
MoSi, at elevated temperatures. Further work is needed to optimize properties of
both Cr:Si and MoSi,-base composites. '

Sum |
Fig. 5¢). Microstructure of MoSi, + 30v%SiC, + 10v%SiC.,
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MULTI-AXIAL RESPONSE OF A WOVEN CONTINUOUS-FIBER
COMPOSITE

P. Lipetzky, G.J. Dvorak and N.S. Stoloff,
RPI, Troy, NY 12180, Tel: 518-276-8374

ABSTRACT

Thin-walled cylinders of a woven [0/90] continuous fiber-reinforced ceramic
composite are tested in combinations of tension, torsion and internal pressure in
order to characterize the stress-strain response. Damage envelopes, defined as the
loci of combined load states that bound the region of elastic behavior, have also
been measured. Loading beyond any given elastic limit can cause both an
expansion and a translation of the original damage surface according to the
maximum effective stress. Within the damage envelope Young’s and shear moduli
are dependent on both load angle and position in stress-space. For several
different load paths an ultimate effective strain of 0.6% has been observed. An
empirical model is also investigated and results are in reasonable agreement with

- proportional loading cases; for non-proportional loading only trends are predicted.

INTRODUCTION

Studies exist in the literature which have examined biaxial or triaxial
deformation behavior of fiber-reinforced or woven composites. The objective
in such work is the understanding of deformation and fracture of materials
which are subjected to arbitrary combinations of stress [1-7]. In the course of
this project, extensive flat plate testing has been reported, but additional data
is necessary to expand the understanding of the weave deformation tendencies
[8]. The work here describes the multi-axial behavior of continuous fiber,
woven SiC/SiC composite tubes in terms of damage tolerance and evolution
prior to failure. By testing tubes, edge effects are minimized and the load
angle can be varied arbitrarily. Using internal pressurization, tension and
torsion, the three independent stress components are axial stress,
circumferential stress and shear stress. Finally, models which combine
specific empirical data and numerical analysis are discussed in terms




of observed constitutive relations. Given a clearer understanding of the
general stress-strain behavior, design criteria can be established for this
composite. '

MATERIAL

The composite of interest consists of continuous SiC (Nicalon) fiber-
reinforced SiC manufactured by DuPont Lanxide Composites. Fiber tows are
woven into a mat with a plain [0/90] weave, which is subsequently rolled into tube
form and chemical-vapor infiltrated with crystalline SiC as well as additional
oxidation inhibitors. In this geometry no seam exists; approximately 10 layers, all
in the [0/90] orientation, exist along any radial line in the tube. Following
consolidation, a final seal-coat of SiC approximately 100 pum thick is applied.
Typical tube dimensions are 8.0 in X 1.7 in (OD) X 1.5 in (ID). Residual porosity
is near 15%, and the fiber volume fraction is near 30%. Specimen density is
approximately 2.3 g/cc. Additional details are given elsewhere [8].

EXPERIMENTAL PROCEDURE

Experimental investigation involves static tension and torsion testing
at room-temperature in air. End-cap grips are bonded to the tube with a
structural epoxy leaving approximately 6 inches of the tube exposed. Strain is
measured using multiple resistance-type strain gauge rosettes in the center of
the gauge section. Strain gauges are also applied closer to the end caps to
determine the extent of end effects. Load angle is controlled by
independently adjusting the tension, torsion or internal pressure.

NUMERICAL ANALYSIS

Part of the multiaxial deformation analysis of this material is based on an
interpolation scheme proposed by Genin and Hutchinson [1]. The model assumes
that for plane stress conditions in an arbitrary [0/90] composite, the proportional
loading behavior at any angle can be interpolated from the uniaxial loading results
in the 0° direction and the 45° direction. The required input curves include the
following stress-strain relationships: Axial and transverse strain as a function of
tensile stress, o, in the 0° configuration, g; = fy(c) and gg = fy1(c), respectively;
axial and transverse strain response under tensile load in the 45° orientation, g =
fus(o) and gg = fis1(c). Given the assumption that there is no coupling between
damage modes, equi-biaxial loading (o1 = o1 = &) conditions result in the
following relation between axial and transverse strains: fy(o) + for{c) = fus(c) +
fist(c). Above the elastic limit, the differences between the actual stress and
elastically calculated stress, Ac, are defined as: Ac’; = EY (g; + veq) - Fo(en€n),
where E¥ = Eo/(1-V?), oy = [o(e1,€n) is the observed first principal stress-principal




strain relation for 0° loading and v is the Poisson ratio. Similarly, Ac’, Ac*iand
Ac*; define the stress differences for the first and second principal stresses at 0°
and 45°. Following interpolation from these functions (Ac® and Ac*’) to the
actual principal stress direction, results are rotated back into the original [0/90]
configuration to give overall constitutive relations for proportional loading
including material damage:

G = E¥(Exx + VEyy) - AGICOS™0 - Acsin’®

Oy =E¥(gy + VE) - Acgcos®0 - Acisin’®

Oy = Gy + (Aot - Aoyg)sinfcosd

where G is the shear modulus and 8 is the actual principal stress or strain
angle. Results based on this empirical model will be compared to
experimental observations for various load paths. Other analysis methods
based on effective stress and strain will also be presented and discussed
below.

RESULTS AND DISCUSSION

As the background for a general analysis, the results from simple load
angles are presented first. Figure 1 shows the stress-strain behavior under
tensile and torsional load; torsional strain, y = 2¢, is plotted. Young’s
modulus and shear modulus are approximately 125 GPa and 48 GPa,
respectively; proportional limits are 75 MPa and 65 MPa in tension and
torsion, respectively. Tension data follow an apparently bilinear constitutive
relation prior to failure.

The analysis now turns to the specific load state involving tension,
torsion and internal pressure which approximates uniaxial tension at 45°
angles to the fibers. Results in Figure 2 show stress and strain at angles of
45° (g; = fis(o)) and 135° (eg = fis(c)) with the linear elastic regime ending
near 40 MPa. The data are roughly linear between 40 and 110 MPa; above
110 MPa the sample becomes increasingly compliant until failure.

Sufficient data now exist to implement the predictions of the empirical
model described above. The constitutive relations required for input are axial
and transverse behavior under uniaxial load, & = fo(c) and &g = for(c), and
axial and transverse behavior under 45° load, & = fi5(c) and eg = fis1(0).
Figure 1 shows the agreement between predicted and observed shear
behavior. Under conditions of equibiaxial loading it is possible to calculate ex
= fis1(0) = fo(o) + for(o) - fis(o), as plotted in Figure 2. In both Figures 1
and 2 the proper trends are predicted, and good agreement exists for limited
excursions into the damage regimes.

Realistic design conditions involve operation within the elastic region.
Therefore, it is necessary to determine the elastic bounds as well as the




influence of a stress overload on those bounds. Define the damage envelope
as the locus of points in stress-space which bounds the linear elastic region, as
plotted in Figure 3. Limits are obtained by loading under various load paths
until linearity is lost in either the axial or torsional stress-strain response.
Altering the load path near the boundary does not affect the point where
damage begins. The elastic response within the damage envelope is a
function of position and stress path. For example, beginning from a combined
state of 40 MPa tension and torsion (40,40), changing both stress components
+10 MPa (4 permutations as shown on Figure 3, i.e. 30,50) gives axial moduli
in the range of 64 - 118 GPa. Shear moduli are less sensitive, ranging from
31-38 GPa. The same load excursions from a state of pure tension, 40 MPa,
gives axial moduli in the range of 72 - 83 GPa, and shear moduli from 30-31
GPa. These differences are attributed to the deformation coupling between
axial and shear strain. Proportional loading will be defined as any load path
which is perpendicular to the damage envelope.

The damage envelope can be altered as a result of tension and
torsional loads beyond the original or current elastic boundary. Figure 4
shows how a pure tension overload translates the surface to a higher axial
stress position without changing its shape. Similarly, both axial and torsional
expansion are registered following a torsional overload. A single torsional
overload in the “positive” direction causes the damage surface to expand in
both the positive and negative senses.

A method of representing the damage surface must be found in order to
predict the new elastic limits following an arbitrary load into the damage regime.
- The effective stress, or von Mises stress, plotted as a function of axial stress
shows consistent, nearly parallel lines for both the original and expanded damage
surfaces as plotted in Figure 5. Therefore, it is only necessary to locate a single
point on the expanded damage surface from the final stress state in order to define
the new damage envelope. Figure 4 also shows the agreement between points for
the predicted and actual damage surface using this concept.

Constitutive results from Figures 1 and 2 are re-plotted on an effective
stress-effective strain format in Figure 6. Tension and torsion data are now
virtually coincident while samples loaded in tension at 45° display a higher
compliance. Failure strain for all load cases is nearly 6000 pe. Also plotted
are deformation results for Case [V, the combined stress state of 125 MPa
tension (fixed) with increasing torsion. The starting point (125 MPa tension)
is in good agreement with flat-plate tensile data and the application of torsion
causes a linear increase in effective strain up to failure at near 6000 e along a
path which is consistent with other data. Apparently, non-proportional
loading has little influence on the observed behavior when plotted in this way.
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EFFECT OF SALT CORROSION ON MECHANICAL PROPERTIES OF A
SIC-SIC COMPOSITE IN DRY AND MOIST HIGH-TEMPERATURE
ENVIRONMENT

P. Lipetzky, M. Lieblich, W. Hillig and D. Duquette,
Rensselaer Polytechnic Institute Troy, NY 12180; 518-276-8374

ABSTRACT

Oxidation and hot-corrosion effects on the mechanical and physical properties of
SiC fiber-reinforced SiC have been studied under both short- and long-term
exposure to dry air, argon, oxygen and water vapor up to temperatures of
1200°C. Results in all ambients show a rapid initial weight loss followed by
various degrees of weight gain for times up to 20 hours. Hot corrosion studies
utilize thin surface coatings of Na,SO, and NaCl. Samples exhibit a steady
weight loss under these conditions which surpasses the weight loss observed
during similar oxidation tests. Salt-coated samples were also exposed to moist
ambients; water vapor was seen to rapidly accelerate weight loss. Mechanical
properties are also reported from static fatigue tests in oxidizing and corrosive
environments. It is seen that the conditions which promote weight loss are not
necessarily detrimental to specimen life due to the protective coating. Finally, it
is seen that minor loss or cracking of the protective surface layer can
significantly shorten the life.

INTRODUCTION

Components in high-temperature engine and heat-recovery applications
are typically exposed to aggressive atmospheres which can contain sodium-,
magnesium-, sulfur- and carbon-based gases as well as water vapor and
numerous entrained particulates. Under these conditions, Na-based salts such as
Na;SO4 can deposit and degrade or remove material from the substrate. This
hot-corrosion process takes place between the melting point and dew points of
the respective salts and can drastically reduce the useable service time of many




high-temperature components [1]. The temperature range for such attack is
typically between 800°C and 1400°C, depending on pressure and composition
of the ambient gas. In silicide-based ceramics the degradation is related to the
solubility of tramp elements, such as sodium, in the passivating silica layer which
promotes devitrification of silica and thus lowers its effectiveness as an oxygen
barrier [2]. In this work the effect of two Na-containing salts (NaCl and
Na,S0,) on the oxidation behavior and mechanical properties of SiC/SiC were
examined in oxidizing and inert atmospheres.

MATERIAL

The material used in this investigation is a continuous SiC (Nicalon)
fiber-reinforced SiC composite manufactured by DuPont Lanxide Inc. Tows of
roughly 500 carbon-coated (0.2-0.4um) fibers are woven into a plain weave
[0/90] fabric, which is subsequently chemical-vapor coated with various
oxidation inhibitors and crystalline SiC. Approximately 8 such plies, all in the
[0/90] orientation, are consolidated into the final plate. Tensile specimens are
cut in the 0° orientation with a 20% reduction in the gauge section width. The
final step is the application of a 100 micron SiC seal-coat. Figure 1 shows a
cross section of the material. The fibers (~30 %) bundles and residual porosity
(~15%) are visible. Further details can be found elsewhere [3,4].

EXPERIMENTAL PROCEDURE

The test conditions involve atmospheric and corrosive attack while
under various loads. The corrosion pre-treatment is to soak samples in a
saturated salt solution followed by drying at 150°C for roughly 20 minutes.
Typical salt coatings are near 10 um, which simulates 500 hours at 900°C in a
combustion application [5]. Oxidation and corrosion experiments involve
weight evolution studies during stress-free thermal exposure. Temperatures
between 500°C and 1200°C are investigated here because oxidative attack
begins near 500°C and Nicalon fibers degrade rapidly above 1200°C. Results
will be reported on the basis of weight change per exposed surface area
averaged over 6 specimens. Rectangular samples for this purpose are cut from
the tensile coupons such that 4 of the 6 sides are protected by the seal coat and
the other 2 are left as-cut. Sample size is typically 2.5 X 2.5 X 10.2 mm, with
the as-cut surface dimension being 2.5 X 10.2 mm. Effects of other ambients on
oxidation are also investigated. A water vapor environment is produced by
injecting pre-heated moist air (0.1 liter/min STP, dew point 90°C) into the
furnace. Dry air, oxygen and argon are also supplied at this rate. Experiments
investigating the effects of corrosion on mechanical properties involve the same
salt pre-treatment on a complete tensile coupon followed by time to failure and




Comparing predicted and observed behavior for Case IV loading shows that
the model is in poor agreement with observations for non-proportional load
paths. Predicted stiffness is overestimated and the predicted non-linearity is

not observed. Furthermore, the failure condition cannot be determined using
this model.

SUMMARY AND CONCLUSIONS

The deformation behavior of a woven [0/90] ceramic composite has been
analyzed under multi-axial loading conditions. Tension and torsion results show
approximately bilinear constitutive relations, while more complicated load paths
do not. Boundaries for the linear elastic region are plotted as damage envelopes
in stress-space. Within the elastic envelope axial and torsional modulus are
highly directional. Increasing both tension and torsion produces the most
compliant response, while decreasing tension and increasing torsion gives the
stiffest response. Differences in modulus are as high as a factor of 2. Consistent
trends are seen for damage envelope expansion and translation based on the
effective stress maximum during loading. A coupled numerical-empirical model
has been developed which can be used to predict behavior under proportional
loading. Shear deformation is accurately predicted using this model but good
agreement is not seen for non-proportional load angles. Finally, consistent
results were observed for various load paths when stress-strain data were plotted
in the effective stress-effective strain format. To a good approximation, effective

stress and effective strain at failure are 170 MPa and 0.6%, respectively, for any
general load angle.
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Figure 1. Stress-strain response in tension and torsion.
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ATMOSPHERIC EFFECTS ON HIGH-TEMPERATURE LIFETIME OF
CERAMIC COMPOSITES

P. Lipetzky, N.S. Stoloff, G.J. Dvorak,
RPI, Troy, NY 12180; (518) 276-8374

ABSTRACT

This work describes the influence of atmosphere, stress and temperature on
long-term life of SiC fiber-reinforced ceramic composites. Results show that at
1000°C a linear relation describes log of rupture life versus stress data for the
SiC/SiC composite between stresses of 30 and 150 MPa. Conversely, the
SiC/Al,O; material exhibits a run-out at a stress of ~ 80 MPa and 1000°C.
Relative humidity has no direct effect on the lifetimes of either composite,
although modulus retention during testing is promoted by the presence of
moisture. Modulus recovery has been observed in damaged samples following
stress-free high-temperature exposure; mechanisms include silica formation on
internal SiC crack faces. Combined stress-temperature data show that
increasing stress above the proportional limit sharply reduces the 6-hr survival
temperature in both composites. The importance of surface coating is also
addressed.

INTRODUCTION

Developmental ceramics in heat management and structural applications
involve both oxide and silicide matrix and fiber combinations, such as SiC¢/SiC
and SiC¢AlLO; which will be examined here [1-3]. Components will be required
to sustain a variety of loads in oxidizing or reducing environments which may
contain hydrocarbons, water vapor, carbon- and nitrogen-based oxides. A
previous study has shown that water vapor can be a stronger SiC oxidant than
pure oxygen [4]. The morphology of the silica is also atmosphere-dependent,
and the mechanical properties reflect this difference. The present study focuses
on the effect of dry and moist air on the high-temperature lifetime of these
oxide- and silicide-based composites. Susceptibility to environmental attack is




also related to surface coating. Finally, aspects of damage evolution and
recovery will be discussed in terms of environment.

MATERIAL

The two materials used in this investigation are woven Nicalon (SiC)
fiber-reinforced SiC- and Al,O3-matrix composites, manufactured by DuPont
Lanxide Inc. The structures are shown in Figures 1a and 1b. The SiC/SiC
material consists of a plain weave [0/90] fabric, which is subsequently chemical-
vapor infiltrated with propriatary oxidation inhibitors and crystalline SiC.
Approximately 8 such plies, all in the [0/90] orientation, are consolidated into
the final plate. Tensile coupons are machined in the 0° direction and completely
seal-coated with additional SiC. Certain of the samples have a portion of the
seal-coating removed. Further details of the processing and microstructure can
be found elsewhere [5]. The Al,O;-matrix material is similarly reinforced with a
(0/90] woven mat (12 HSW) of Nicalon fibers. Processing involves applying a
0.3 pum coating of BN to the fibers prior to a limited CVD SiC coating. This
porous, rigid pre-form is subsequently encased in alumina using a directional
metal oxidation (DiMOx) process [6]. The residual aluminum alloy is
chemically etched from the sample prior to the application of a final surface
coating. Residual porosity is approximately 10 volume percent.

EXPERIMENTAL PROCEDURE

Experimental investigation involves static tensile testing performed in
dry and moist air over a range of temperatures. Details of the testing facilities
have been given previously [4,5]. Static tests for lifetime stress-dependence
involve holding samples at a fixed stress in a given environment at 1000°C until
either rupture or run-out is reached at 240 hrs. Temperature dependence of life
is investigated using a 6-hr run-out limit Tests are performed by holding a fixed
stress at a given temperature for 6 hrs or until rupture. If the sample survives
these conditions, temperature is increased S0°C and testing continues until
subsequent run-out or rupture. Young's modulus is measured periodically by
slightly altering stress and observing the change in strain in order to monitor
damage evolution. Damage recovery is investigated by thermally soaking
samples under stress-free conditions following an initial load cycle to 120 MPa
or 150 MPa for SiC/SiC and SiC/Al,O; respectively. Moist air is produced by
bubbling air (0.1 liter/min at RTP) through a reservoir of water held at 90°C
into an atmosphere containment jacket around the sample.




RESULTS AND DISCUSSION

Long-term, constant stress testing of SiC/SiC reveals the stress-rupture
behavior as plotted in Figure 2a. Data show no apparent run-out stress in dry
air between 30 MPa and 150 MPa; rather, there is a consistent linear relation
between the logarithm of rupture time and the applied stress. The stress
dependence is stronger for the SiC/Al,O; and an apparent static fatigue limit is
observed at ~80 MPa, Figure 2b. For stress levels above ~100 MPa the
composite lifetimes are roughly equivalent. Similar experiments have been
- performed in moist air. Survival times for SiC/SiC samples tested in water
vapor are comparable to dry air. However, limited data indicate that moisture
may improve life at lower stresses (<70 MPa). Although Al Qs is highly
susceptible to slow crack growth in the presence of water vapor, SiC/ALLO;
lifetimes were not significantly affected [7,8]. Samples consistently failed in the
reduced section.

Specimen compliance is often used as a gauge of composite damage.
The SiC/SiC modulus evolution curves for a stress level of 80 MPa at 1000°C
are plotted in Figure 3. The modulus steadily decreases prior to failure when
tested in dry air, although the presence of water vapor results in a high retained
stiffness. At stresses above 90 MPa no atmospheric dependence is seen and
modulus decrease is steady. Conversely, for stresses below 60 MPa the SiC/SiC
composite displays an “incubation period” prior to the onset of modulus loss.
This phenomenon has been related to the relative rates of silica formation as
well as silica density and adherence [4,9,10]. The SiC/Al,O; samples retain a
high modulus in both ambients. At higher temperatures the inherent degradation
of Nicalon fibers results in a significant loss of both stiffness and strength.

Temperature dependence of the stress-rupture life is addressed by
performing fixed stress-rupture tests with increasing temperature. Table [ lists
the 6-hr survival temperature at 100, 130 and 160 MPa for both ambients.

TABLE I: STRESS TEMPERATURE CREEP RUPTURE BEHAVIOR

6-hr survival SiC/ALO5 SiC/SiC
stress dry air wet air dry air wet air uncoated
100 MPa - 1000°C 1000°C 1000°C 1000°C 900°C
130 MPa 800°C 300°C 750°C 700°C 700°C
160 MPa 650°C 600°C 700°C 650°C 650°C

As in Figures 2a and 2b the materials have similar behavior at high stresses
which are not strongly influenced by ambient. Temperature capability decreases
steadily with increasing stress for SiC/Al,O;, but 130 and 160 MPa are
equivalent in SiC/SiC.




The effects of seal-coating degradation and removal are also of interest
for many engineering applications. Table I shows that SiC/SiC survival
temperatures are reduced roughly 50°C when 25% of the surface seal-coat is
removed. Data are also shown on Figure 3 for SiC/SiC lifetime at 1000°C for
partially uncoated samples; a significant reduction in life is seen which is
independent of ambient.

Damage recovery capability is also examined. Figures 4a and 4b show
modulus data following pre-damage and stress-free exposure to the various
ambients. The SiC/SiC material exhibits extensive modulus recovery in air and
water vapor following only 10 hrs exposure with water vapor causing recovery
to nearly 100% of the original stiffness. Longer exposure time does not induce
any further changes. The same phenomenon is seen in SiC/ALO; samples. The
recovery mechanism is based on SiO, formation on SiC crack faces. Energy-
dispersive X-ray oxygen peaks are observed on post-recovery matrix crack
faces, but not after short-term failure. Following damage and 40 hrs recovery
under these conditions the SiC/SiC does not lose ultimate tensile strength,
although the SiC/AlLO; loses over 60%. Recovery is sufficiently robust that
recovered SiC/SiC samples subjected to static fatigue conditions showed
lifetimes which were consistent with undamaged samples; recovered SiC/ALOs
samples were much weaker.

Other exposure effects are also investigated. Thermally soaking as-
received samples at 1200°C for 1 week in either air or argon significantly
reduces both the ultimate strength (~50%) and stiffness (~10%) for both
composites. Thermal cycling has also been performed between 20°C and
1000°C (20 min cycles). Following 50 cycles no strength or stiffness was lost.

SUMMARY AND CONCLUSIONS

Experiments have been performed to determine the effects of
temperature and environment on the mechanical behavior of continuous SiC/SiC
and SiC/ALO; composites. Results show that ambient composition does not
affect short-term behavior at any temperature up to 1000°C, although long-term
tests show distinct atmospheric dependence. Static fatigue life for the SiC/SiC
composite at 1000°C follows a linear relation between stress and log of rupture
time up to 240 hrs over a stress range of 30 - 150 MPa. Under the same
conditions the SiC/Al,O; composite displays a stronger stress-dependence and
reaches static fatigue run-out at ~80 MPa. Data at low stress indicate that moist
air may promote long-term life by forming a coherent passivating silica layer
which can support load and retard oxygen ingress. Silica formation in dry air is
less rapid and the resulting glass appears less dense. The importance of surface
coating has also been investigated. Removal of 25% of the seal-coating can




 reduce specimen life up to 80%. The 6-hr survival temperatures of SiC/AlLOs
are observed to decrease on the order of 6°C per | MPa in dry air for stresses
greater than 100 MPa; moist air causes a slightly larger drop. Rate of survival
temperature decrease for the SiC/SiC composite is not linear with stress; loss of
surface coating and exposure to water vapor also accelerate the reduction. In
general, the SiC/Al,O; composite survives a given stress at higher temperatures
for longer times; it is not clear whether the difference in composition or the
different weave geometry is responsible {11]. Modulus retention and recovery
have been observed for various time-temperature-stress histories. Water vapor
causes SiC/SiC to retain a high modulus under load, and causes recovery to
nearly 100% of the original stiffness if stress is near zero. Exposure to dry air
results in less modulus retention and less modulus recovery. The mechanism is
based on SiC crack face adhesion due to the formation of silica. The SiC/ALO;
samples exhibit similar modulus recovery, but are not prone to modulus loss
during static fatigue.
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Figure 1. - Micrographs of SiC/SiC (a) and SiC/Al;Os (b) structures.
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modulus evolution curves for different load levels. Mechanical test
temperatures are between 20°C and 1000°C. Specimens here are completely
seal-coated, and are thus slightly different than oxidation samples. Mechanical
testing can be performed in different ambients by continually injecting the pre-
heated ambient into a high-temperature jacket around the specimen. Short-term
mechanical tests are not affected by the various salt coatings or atmospheres.

RESULTS AND DISCUSSION

Experimental data showing the area-normalized weight histories of as-
received samples exposed to the various atmospheres are shown in Figures 2-4
for times up to 20 hours. Temperatures shown are 500°C, 850°C, 1000°C and
1200°C. Weight evolution trends for temperatures below 850°C are distinctly
different than data for 1000°C and higher. However, data for all temperatures
show an initial weight loss followed by a slow increase. This is in qualitative
agreement with results on a similar composite reported by Fox et al. who
observed rapid weight loss followed by weight gain with a parabolic rate
constant of K,=0.0017 mg*cm’*hr at 1200°C in dry oxygen [6].

The data at 1200°C from Figure 2 show that weight evolution in oxygen
and dry air ambients follow the same trend as dry air at 1000°C, although
oxygen causes a larger initial weight loss. The steady weight gain with
parabolic kinetics can be explained by the formation of a passivating silica layer.
The initial weight loss is attributed to reactions of the oxidation inhibitors and
organics prior to complete passivation. The water vapor ambient results in a
larger initial weight loss followed by a steeper weight gain. For tests up to 200
hours it was observed that the samples exposed to water vapor reach a peak
weight at about 50 hours, followed by slow weight loss [3]. The presence of
water vapor reverses the weight gain trend due to volatilization of SiO; as SiOH
[3]. Conversely, samples tested in oxygen continue to gain weight at 1200°C
according to a parabolic rate constant K, ~ 0.23 8mg’/cm’hr. The extreme
difference in these rate constants, K,, is due to the difference in un-coated area.

At temperatures below 850°C passivating silica forms slowly, thereby
allowing extensive specimen degradation. Figure 3 shows that both dry and
moist air cause extensive weight loss prior to stabilization at times over 20
hours. Recall at 1000°C stabilization in the same ambient occurs at ~5 hours.
Water vapor is clearly the most aggressive environment in terms of weight loss.
For example, after 5 hours at 850°C the weight loss in water vapor is nearly 4
times larger than in the other environments at any temperature. An argon
ambient results in negligible weight loss at any temperature. The small weight
loss observed at 500°C in air is attributed to oxidation of interfacial carbon.




Results of similar weight evolution experiments are plotted in Figure 4
for salt-coated specimens. The curves in all cases are self-similar; thermal
exposure causes a net loss with no apparent minimum. Both increasing
temperature and adding water vapor increase the rate of loss. At a temperature
of 1200°C the atmosphere and salt play decisive roles [6-8]. Samples coated
with NaCl exhibit a slightly larger weight loss than when coated with Na;SO..
The difference could be due to the volatility of NaCl and decomposition of
Na;SO, at this temperature [9,10] The most aggressive environment is clearly
Na,SO, in moist air; weight loss after 20 hours is roughly 5 times the weight
loss measured in dry air. Physical examination of the most degraded samples
reveals extensive formation of surface glass which contains numerous bubbles
and cracks, Figure 5. The poor coherence and continuity of surface glass is due
to the sodium-induced devitrification of silica. Crystalline silica, tridymite and
crystobalite, is weaker and has a lower resistance to oxygen diffusion than
vitreous silica. Furthermore, the CTE is roughly 5X the CTE of silicon carbide
[2,8]. Conversely, purely oxidative exposure results in a dense passivating
vitreous layer at low temperatures and a layered structure at higher
temperatures as seen in Figure 6.

The relative weight loss should be an indicator of component life. For
example, after 20 hours the uncontaminated samples display stable weight, while
salt-coated samples continue to lose weight rapidly. This implies that salt
coatings can act to shorten composite life; water vapor may also contribute.

Mechanical testing of samples in dry air is conducted to establish a
benchmark for atmosphere and surface salt comparison. Figure 7 shows time to
rupture in dry air at 1000°C for stress levels from 30 to 145 MPa. The lifetime
of samples follows a linear relation between stress and logarithm of survival time
(hours) over the entire stress range. Below 40 MPa survival time is consistently
over 240 hours. During these tests Young’s modulus decreased in two distinct
ways: starting immediately after load is applied; or after a long “incubation”
period, during which no decrease is registered. The effect of a surface coating
of Na,;SOs in dry air on rupture life is also plotted on Figure 7. Survival time at
low stress is not reduced by the surface salt. The life-invariance with surface
contamination is in apparent contradiction to the weight |oss data described
above. However, the tensile samples are completely seal-coated and oxidation
samples are not. Tests have also been performed in air and water vapor with
25% of the surface coating removed; results show a 5X decrease in life [3].

Finally, it is of interest to establish some indication of temperature
dependence on lifetime. Specifically, the temperature that corresponds to an
approximate 6 hour life at a stress of 160 MPa is 700°C for as-received samples
tested in dry air. When the environment becomes more aggressive, Na,SO, in




moist air, this temperature drops to 650°C because of the chemical-indudced
loss of integrity of the passivating surface silica.

SUMMARY AND CONCLUSIONS

Experiments are performed to determine the effects of sodium-based salt
deposits on the oxidation, corrosion and mechanical behavior of a SiC/SiC
composite. Results have shown that 1000°C defines a boundary between two
reaction regimes. Above 1000°C a protective silica layer forms which slows
atmospheric attack. Below 1000°C extensive weight loss is observed for all
ambients. Exposure of samples to salt in moist air at 1200°C is the most
detrimental in terms of relative weight change. Mechanical properties have
similarly been investigated. The stress for long-term composite survivability,
>240 hours, is approximately 45 MPa in the as-received condition when tested
in dry air at 1000°C. At higher stresses, sample life is shortened according to a
linear relation between stress and the log of rupture time. If a sample is tested in
water vapor the lifetime is not affected, although the stiffness remains high until
failure. The presence of both a salt coating and water vapor can affect run-out
stress and modulus retention. Salt deposits can be expected to shorten life in
real components by increasing the rate of environmental attack if the seal
coating is damaged or removed. :
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Figure 1. Cross section of as received SiC/SiC




18

12 14 16 .4
2,05
_40E5
o~
<
£ 6.0e5
£
- _— mm e m————— emmm——mmm————— -
Olsoes ===
©
s | 4 :
;_1 04+ %\ e /
e B
............... —— Argon
3-1.254 + .. e —e- Airg
—— Air, 1000C
-1.4E-4 1 L —— Oxygen
* ..e--H20
-1.6E4
Time (hours)
Figure 2. Weight change per area of SiC/SiC at 1200°C or 1000°C (noted)
0.0E+0 g - R N : .
o\ Tl 2 4 5 8 10 12 14 18 18 2
S.0E5 | N
No10e4 1 el §
= IR
Easesl \ T i
S
(9.2.0E4 1
)
L
S
S-2.5E4 +
=
=
©-30E4 +
e —=— Air, 500C
-35E4 + —=—Argon
-«- Air
404 L —=H20
Time (hours)
Figure 3. Weight change per area of SiC/SiC at 850°C and 500°C (noted)




)

4E4 -

mm#*2

eg (gl
L

ht/Ar
&
N

19

We

4.E3 =

--+.-Na2S04-wet, 1000C \
——Na2S04 - dry N
-+--NaCl - dry w

——NaCl - wet T

-x- Na2S04 - wet A el

-1.E-3 -

Figure S.

Figure 6.

Time (hours)

Change in weight per area of salt-exposed SiC/SiC at 1200°C
and 1000°C (noted)

(6)

External view of oxidized SiC/SiC showing bubbles and cracks
of glass surface.
Layered passivating coat of glass on oxidized SiC/SiC.




160

.
140 + o
.
120 + )
L
- 100 + . |
o o i
Q. |
£ - |
w 80+ 0. ee !
0 !
£ :
0 e - o
e i
g Q ~—p
w0+ e —
204 e As-received
< Na2S04-coated
. |
0.1 1 10 100 1000
Time (hours)
Figure 7. Rupture time of Lanxide SiC/SiC at 1000°C in air, constant
stress.
REFERENCES
1. C. Ewing and K. Stern, “Vapor pressures of common salts,” Jour. Phys. Chem, Vol

2.

10.

78 (20) 1974, pp1998-2005.

M. Lawson, H. Kim, F. Petit and J. Blachere, “Hot Corrosion of Silica”, J. Am.
Ceram. Soc., Vol 73, [4] 1990, pp989-95.

P. Lipetzky and W. Hillig, “Benefits and limitations to the use of silicides in high-
temperature applications,” Engr Found Conf Proc, TMS, 1997.

P. Lipetzky, G. Dvorak and N S. Stoloff. Mat. Sci. Engr., A216, 1996, pp11-19.
S. Saunders and T. Gibbons, “Developments in test procedures for hot-salt
corrosion of superalloys” High temperature surface interactions, 68th Meeting of
structures and materials panel of AGARD in Ottawa Canada, 23-28 April 1989.
D. Fox and Q. Nugent, “Oxidation kinetics of enhanced SiC/SiC” 1995 Ceram
Engr and Sci Proc Cocoa Beach Conference on Advanced Ceramics.

J. Federer, “Corrosion of SiC by Na,S0,”, Adv. Cer. Mat., 3(1) 1988, pp36-61.
T. Parthasarathy, T. Mah, C. Folsom and A. Katz, “Microstructural stability of
Nicalon at 1000°C in air after exposure to NaCl water”, J. Am. Ceram. Soc.,,
1995, 78 [7], pp 1992.

R. Fryxell, C. Trythall and R. Perkins, “Physical properties of Na2S04,”
Corrosion-NACE. Vol 29, No. 11, 1973, p423.

J. Tschinkel, “Formation of Sodium Sulfate in gas turbine combustors,” Corrosion-
NACE, Vol. 28, No. 5, 1972, pp161-69. ‘




BEHAVIOR OF SIC-FIBER/AL,0; COMPOSITE WITH NA-BASED SALTS
IN DRY AND MOIST OXIDIZING ENVIRONMENTS

P. Lipetzky, M. Lieblich, W. Hillig and D. Duquette,
Rensselaer Polytechnic Institute, Troy, NY 12180

ABSTRACT

The current analysis focuses on thermogravimetric and mechanical properties of
a SiC fiber-reinforced Al,Os matrix composite during exposure to oxidative and
corrosive environments. Results show a significant weight gain at temperatures
above 1000°C in oxygen as well as dry and moist air for times up to 200 hours
under stress-free conditions. Below 1000°C an initial weight loss is seen in dry
and moist air with no return to the original weight; this behavior is also seen for
1200°C argon exposure. Experiments have also been performed on salt-coated
samples (N2;SO.) exposed to similar temperatures and atmospheres. Under
these conditions continuous weight loss is observed for times up to 200 hours.
Mechanisms of degradation include SiC oxidation and surface spalling.
Mechanical properties have been measured following exposure to the same
conditions at temperatures below 1000°C. Short-term test results are
independent of ambient composition or salt coating. Long-term tests show that
static fatigue life is dependent on salt coating, temperature and relative humidity.

INTRODUCTION

Based on the high specific stiffness and inherent resistance to oxidative
attack, oxide-based composites are candidate materials for applications ranging
from chemical processing to combustion components. Such environments are
likely to contain corrosive sodium and sulfur species as well as water vapor and
reducing oxy-nitride compounds. This study focuses on the long-term effects of
oxidative and corrosive environments on weight and mechanical properties of
this composite at high temperatures. Atmospheres include dry and moist air as
well as oxygen and argon at temperatures up to 1200°C. The corrosive salt is




Na,S0,, which is known to deposit in typical combustion conditions and result
in removal of material as well as degradation of mechanical properties [1].

MATERIAL

The material used in this investigation is a continuous SiC (Nicalon)
fiber-reinforced alumina composite manufactured by DuPont Lanxide using a
directional metal oxidation (DiMOx) process [2]. Tows of BN-coated fibers are
woven into a 12-harness satin [0/90] fabric, which is subsequently chemical-
vapor coated with crystalline SiC. Approximately 10 such plies, all in the [0/90]
orientation are consolidated into a plate. The porous plate is then brought into
contact with a molten aluminum alloy under an oxidizing ambient for the
DiMOx infiltration. Unreacted metal is subsequently etched from the alumina
matrix leaving approximately 10 % void space. Reduced-section tensile
coupons are machined from these plates in the 0° direction prior to application
of a final seal-coat. Figure 1 shows a cross section of the material transverse to
the loading axis. The fibers and fiber coatings as well as the matrix are visible.
Numerous matrix cracks which result from thermal expansion mismatch and
directional matrix growth columns are visible in the as-received state.

EXPERIMENTAL PROCEDURE

Oxidation and corrosion studies are performed in wet and dry, oxidizing
and inert ambients at temperatures of 500°C, 850°C, 1000°C and 1200°C.
Specimens are cut from tensile coupons perpendicular to the loading axis so that
the exterior seal-coat covers only 4 of the 6 sides. Samples are typically 0.1 X
0.1 X 0.4 inches, with the as-cut surface dimension being 0.1 X 0.4 inches.
Sample preparation for stress-free corrosion exposure involves soaking cut
sections in a saturated salt water solution (Na,SO) followed by air drying at
150°C. This results in roughly a 10 um surface layer which is comparable to the
expected salt coating on a turbine engine component after 500 hours at 900°C
with a sulfur fuel impurity level of 0.05% [3]. Water vapor is supplied to the
furnace by passing a continuous stream of compressed air through a 90°C water
reservoir at a rate of 0.1 liter/min. Oxidizing and inert gases are also continually
supplied at this rate. All weight changes are normalized to total specimen
surface area, due to the minimal effect of the seal coating.

Environmental effects on mechanical properties are also investigated
using time to rupture and modulus evolution curves in the presence of the
above-mentioned ambients. Details of the mechanical testing apparatus and
testing procedure can be found elsewhere [4]. Environmental influence on
short-term mechanical properties are not reported because no effect is observed
for either atmosphere or salt coating. Mechanical property test data is limited to




temperatures below 1000°C because of the sharp drop in strength and stiffness
following exposure above this limit. The time-temperature dependence of stress
rupture is determined by holding a constant stress for 6 hours or until rupture.
Following 6-hour survival at 500°C, temperature is increased step-wise 50°C
and testing continues at that stress.

RESULTS AND DISCUSSION

Experimental data from the thermogravimetric analysis for samples
exposed to dry air are shown in Figure 2. Specific weight change for the as-
received samples exposed to dry air at 500°C, 850°C, 1000°C and 1200°C are
plotted up to 200 hours. At 500°C there is a significant weight loss during the
first 5 hours followed by stable behavior. Some initial loss is seen at all
temperatures followed by slow weight gain at 850°C and 1200°C. Given the
hydrophilic nature of alumina, the weight loss is attributed to a process of
driving off adsorbed water from internal micro-pores. This is supported by the
observation that exposure to inert gas (argon) at temperatures up to 1200°C
follows the same weight evolution curve as 500°C air. The decreasing levels of
weight loss with increasing temperature is a result of the competition between
drying rate weight loss, and oxidation rate weight gain. The subsequent weight
gain which occurs at temperatures greater than 850°C is largely associated with
the oxidation of SiC or residual aluminum metal (2 vol%). Behavior in 1000°C
dry air is parallel to 1200°C dry air, but positioned at a lower specific weight.
This exemplifies the opposing effects of the drying and the oxidation. The
parabolic rate constants for weight gain in 1000°C and 1200°C air are; K, =
0.053 mg¥/cm* hr, K, = 0.051 mg?/cm* hr, respectively. Higher temperature
leads to more rapid weight gain due to increased reaction rates as well as
increased diffusion rates.

Exposure studies have also been conducted in other ambients as plotted
in Figure 3. At a temperature of 850°C water vapor plays no decisive role in
weight evolution. Apparently, the water vapor in the ambient air does not affect
either the rate of internal evaporation or the rate of SiC oxidation. Conversely,
at 1200°C water vapor eliminates any net weight loss over the first 2 hours by
significantly increasing the rate of SiC oxidation; K, = 0.080 mg*/cm* hr. Pure
oxygen exposure at 1200°C results in a minor initial weight loss and an even
greater weight gain than air; K, = 0.076 mg? /cm* hr.

Results from salt-coated sample exposure are plotted in Figure 4. The
Na,SO, coating causes a rapid and severe weight loss in all ambients 850°C and
above. After 20 hours the samples have lost roughly 8 mg/cm?® compared to a
weight gain on the order of 0.5-1 mg/cm? in Figures 2 and 3. Furthermore, salt-
coated samples continue to lose weight at a rate which is ~25X greater than the
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Figure S. Structure following exposure to 1200°C and salt surface coating.
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samples show a small degree of weight gain and parabolic kinetics; rate
constants are reported. Mechanical properties have similarly revealed the
influence of surface contaminants and atmosphere on material integrity. In the
as-received condition in air, the run-out stress is approximately 80 MPa. At
higher stresses, sample life is shortened according to a non-linear relation
between stress and the logarithm of rupture time. Water vapor and salt coatings
are more aggressive chemically, but cause only a slight reductions in life.
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rate of weight gain with no salt. Data show that dry and moist air are equally
aggressive at 850°C and above. Samples exposed to these conditions, Figure 5,
show that salt causes degradation via the formation of a sodium silicate glass.
However, proper interpretation of weight evolution must consider that Na;SO4
is capable of vaporizing at these temperatures. Therefore, total weight change is
a result of corrosion combined with salt decomposition and evaporation [5,6,7].

Mechanical testing of as-received composites under constant load and
temperature is conducted to establish a reference baseline for material behavior.
Figure 6 shows time to rupture in dry air at 1000°C for stress levels between 70
and 145 MPa. Although tests have only besn conducted for a maximum of 240
hours, an apparent run-out stress is observed at 80 MPa. At higher stresses
rupture time roughly follows a bilinear relation between log of rupture time and
applied stress. The effect of a thin surface coating of Na;SO, on rupture life is
also plotted on Figure 6. The Na;SO,-coated samples ruptured at times which
were consistent with the as-received samples. This highlights the importance of
surface coating integrity.

Water vapor effects are also of interest with respect to the as-received
and the salt-coated material. For comparison water vapor alone results in a
rupture time of ~13 hrs at 100 MPa and 1000°C. No significant decrease is
seen here in spite of the stress corrosion cracking susceptibility of aluminum
oxide [8,9]. Additionally, water transport through amorphous silica is roughly
an order of magnitude faster than oxygen transport [10]. Therefore, both the
matrix and fibers are degrading faster in the moist environment. Combining
Na,SO, with water vapor also results in a higher level of chemical reactivity, but
no significant reduction in life is seen; 100 MPa, 1000°C, rupture time is 20 hrs.

Finally, it is desired to establish the temperature at which a high level of
stress can be supported for 6 hours. This indicates the design conditions which
may be approached for a short-term combustion application. In dry air failure
under 160 MPa load occurs within this time at a temperature of 650°C, while
moist air causes failure at 600°C in the same window.

SUMMARY AND CONCLUSTONS

This work has investigated the high-temperature oxidation and corrosion
behavior of an SiC/Al,O; composite under dry and moist ambients. Results
have shown that an initial weight loss occurs in all ambients followed by some
degree of steady weight gain at temperatures above 850°C. Increasing
temperature, oxygen activity and relative humidity all increase rate and extent of
weight gain. Combining a salt coating in moist air is the most detrimental in
terms of relative weight change. The presence of the Na-containing salt causes
a rapid weight loss with apparently linear kinetics. In the absence of salt,
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1. Introduction

Patibandla et al. [4,5] describe a reactive vapor infiltration (RVI) process for manufacturing fiber-reinforced
ceramic composites where silicon carbide (SiC) or alumina (A!,0 ) fibers are mixed with molybdenum (Mo ) powder and
pressed at room temperature to form a porous preform. The preform is exposed to a silicon tetra-chloride (SiCl,) and
bydrogen (H;) flow where molecular-surface reactions liberate Si which, when absorbed into the preform, reacts with
Mo o form a molybdenum di-silicide (MoSi,) matrix. As a first step in modeling the RVI process, we present a
mathematical model of the diffusion of Si into a compressed-powder Mo pellet to form the MoSi, matrix. The produc-
tion of an intermediate (Mo sSi5) silicide layer, the growth of the MoSi, layer, and the volume expansion of the pellet are
predicted. The resulting partial differential system is solved using an adaptive software system (2] that includes capabili-
ties for automatic quadtree-structured mesh generation, mesh refinement/coarsening (h-refinement), method order varia-
tion (p-refinement), and mesh motion (r-refinement). Computational solutions of one- and two-dimensional problems
indicate that the adaptive software is 1 robust and effective tool for addressing composite-processing problems. The
mathematical model predicts the observed narabolic growth rate of the silicide layer and the volume expansion of the
pellet to a high degree of accuracy. '

2. RVI Modei

The loosely compacted pellet is subjected in a fumace to a flow of SiCl, and H, that réacts on the surface of
grains of the pellet to liberate Si (4,5]. The Si is absorbed into the Mo pellet and reacts as
K k,
SMo + 35i —— Mo sSi;, MosSiy + 75i —— 5MoSi, 2.D

to form Mo Si; and the desired MoSi, silicide. These reactions occur in narrow fronts with free Si diffusing (principally
by solid-state diffusion) through an MoSi, layer to reach the reaction zones. The reactions (2.1) are accompanied by a
158% volume increase which fills the pores between grains of Mo powder, but may cause cracking [4,5).

Suppose the pellet contains a mixture of reactants and products and let the mass m; (g) of species i at time ¢ in a
control volume V be

m, = ipy,. av, i=1,23,4, (2.2)

where p (g/cm?) is the mixture density and Y..i =12, 3, 4, are, respectively, the mass fractions of Si, MoSi,, Mo sSi5,
and Mo . As the pellet deforms due to the volume change, we specify the position of each material point x as a function
of ¢ and its initial spatial position X. With this reference, considerations of mass conservation for species ¢ imply that

dm;
dt
where dV, with unit outer normal n, is the boundary of V: v(X,t) = d,x(X.t) (cm/sec) is the mixture velocity; and

F; (g/icm’/sec) is the mass production rate and J; (g/cm YIsec) is the diffusive flux of species . Assuming Fickian
diffusion J; = -D,V(pY,), with D; (cm*/sec) being the diffusivity of species i in the mixmure.

=-aj J,--ndc—ij,-wt do+{i',- av, i=1273.4, 2.3)
v v

Applying the divergence theorem to (2.3) and using (2.2) yields the partial differential system
D(pY)) ‘

o = %PY) + vVY) = VD YY) - p.Vv+ i, xeQ 130, i=1234, 2.4
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where Q is the spatial region occupied by the pellet at ume ¢.

Mass production fates arc much faster than diffusion rates and, thus, cannot be observed. We assume that all
tons are ireversible, isothermal, cease when one or more reactants are depleted. and are linear in each concentrauu

obwain
;1=-M1(3W1+7W2). ’.'2=5M2W2, i'3=M3(Wl "W:). (“ <
. Y Y Y Y
Fo=-SMw, w = k,(p—ixf—i). LASRVLAERY (o

=k-7'_'
D WG,

The wvariables k, and k; (cm’isec) identify the rates of the reactions (2.1) and M; (g) denotes the molecular weiy
species i = L, 2.3, 4 3. ’

To include expansion, consider a volume V at time ¢ where each chemical occupies the porton v,i=12
Lem’n% V, denote the volume of the voids between chemical compounds, v(x./) = VoV denote the porosity. P; =

(glom™, 1 = 12,3, 4, denote species densities (3], using (2.2), and letting V tend to zero gives
4V, 4 m; 4 s pY; |
1-v=Y—=) — = —pY;dV = 20—/ |
i2=:0 v lgl va i=] vai |§l i
Multiplying (2.4) by 1/p;. summing over i. and using (2.6), we obtain
4
DY @wa-v=X L+ 9.D,Vpr], xeQ >0

i=l Vi

We simplify (2.7) by including the effects of v in the densities of the mixoure components. thh litde fre
the pellet, it is reasonable to neglect V,/V. Furthermore, the diffusivities D;, i =2, 3, 4, are negligible relative
Thas, all diffusive terms are neglected, and we approximate (2.7) as

.
Vv=S —.
Y Z% P

The system is closed by the mixture momentum equation for a viscous medium

D
pZr +vidp + VoW1 =V T

where the traction matrix T (Pa) bas COMpONERLS
TiJ =(-p + A.VV)S,I + u(b,jv,- + ax‘V,-)

with A and p being Lamé parameters, p (Pa) being the pressure, and §; ; being the Kronecker deita.

Specification of initial and boundary conditions complete the model (2.4.5,8.9). When only Mo powder 1
in the initial state, we prescribe
pX0 =9, ¥ X0=0 i=123 Y(X,00=1 vX0)= 0, XeQuaQ.

where { is the initial mixture density. Boundary conditions are developed by assuming that the reaction at the
the pellet ceases when a full monolayer of Si atoms is present on the surface. Therefore, the flux of Si atg
absorbed into the pellet must equal the rate at which they are produced by this reaction. Moreover, we assul
rate of absorption of Si atoms is proportional the deviation of Y, from twice the maximum solubility S of Si

Bowmndary fluxes of other species are neglected: thus,
Dlv(le)'n = —O.(Y| -5, D,V(DY,)II =0, i = 2, 3,4, X€ BQ., t>0.

3. Computational Results

We use an adaptive finite element software system with capabilities for automatic h-, p-, and/or r-refineq
solwe dimensionless versions of (2.4,5.8.9,11,12) in one and two spatial dimensions. With mesh motion, for ey
can both follow evolving fronts and track the volume expansion as the reaction progresses. The particular ¢
of - mnd p-refinement is remarkably effective when high accuracy is necessary. Mesh refinement and order v
comarolled by a posteriori esumates of local discretization €rrors (2] or error indicators. Herein, error indicato]
jumps in the computed flux across element boundaries {2.3].

With the origin of a Caresian coordinate system at the center of a 2a x2b x2c pellet, we introduce di
variables with (x Xp.x3) scaled by (a.b.c), 1 scaled by M Jk,p. and p scaled by P. Employing S
dimensional problems are solved oa 0 <x, <a with x, and X, derivatives set to zero. The initial Mo pelle
porosity with a =1 (mm), a= 10° (glcm¥sec), S =000037. ky= 15%10° and k= 1.5x10]
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N, =037x 1075, L5x 107 and 4.2x 107 (cm¥sec), and D, = |07 (cmsec), « =2, 3, 4. The three values of D,
correspond (o observed diffusivites of St at respectively, temperatures of 1100, 1200, and 1300 (°C) (3-5].

We compare computed and observed [4.5] results for the square of the thickness of the MoSi, layer as a function
of ume for three temperatures wn the left portion of Figure 1. Computed and experimental results are in excellent agree-
ment with deviadons being less than 10%. Mass concentrations of MoSi,, MosSiy, and Mo at a temperature of 1200 °C
and t = 9.2 hr are shown as a function of position in the right portion of Figure |. The MoSi, layer is progressing from
cight to left in Figure 2; thus, the right-most curve is the mass fraction of MoSi,, the steeply-peaked center curve is the
mass fraction of MosSij. and the left-most curve is the unreacted Mo .
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Figure 1. On the left, comparison of computed and observed values of the square of the thickness of the
MoSi, layer as a function of time for temperatures of 1100 °C (diamonds), 1200 °C (triangles), and 1300 °C
(plusses). On the right, mass fractions of MoSi;, MosSi3, and Mo at 1200 °C and ¢t = 9.2 hr as a function

of position.

Solutions shown in Figure 1 were obtained by hpr-refinement and in the left portion of Figure 2 we show the spa-
ual mesh and method order used at 1200 °C and t = 9.2 hr. A coarse mesh and first-order method are used away from
the reaction zone while finer meshes and high-order methods are used near the reaction. The mesh used to soive this
problem is shown as a function of time in the right portion of Figure 3. The mesh is concentrated near the front and
moving o account for the expansion as the reaction occurs.

We also solved a two-dimensional problem involving a @ = 1x 10 (mm?) pellet with the parameters as specified for
the one-dimensional problem at 1200 °C. In Figure 3, we show a quadrant of the mesh at 2, 10, and 30 hrs. obtained
using piecewise-bilinear finite element approximations with Lobatto quadrature used to eliminate spurious oscillations {1].
Expansion occurs in regions having high MoSi, concentrations.

4. Discussion

We have developed a reaction-diffusion system to analyze the RVI and other chemical vapor infiltration processes
of fabricating ceramic composites. When used with an adaptive finite element software system (2], the model predicted
the growth of an MoSi, layer in a siliciding application [4,5]. Production rates, volume expansion, residual stresses and
other effects may be studied as functions of, e.g., initial composition, temperature, and porosity.

Future experiments will be performed with fibers embedded in a powder preform and our models will be modified
to reflect this. Our investigation will seek to reveal optimal fiber placements, packing densities, and process strategies.
By combining a computational and experimental program we are able to identify and verify prototypical optimal combi-
nations much more rapidly than would be possible by using either paradigm alone.
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REACTIVE VAPOR INFILTRATION
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W. Hillig, J. Hudson, N. Patibandla
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1. INTRODUCTION

Patibandla et al. {1,2] describe a reactive vapor infiltration (RVI) process for
manufacturing fiber-reinforced ceramic composites where silicon carbide (SiC) or
alumina (Al,0,) fibers are mixed with molybdenum (Mo) powder and pressed at
room temperature {0 form a porous preform. The preform is exposed to a silicon
tetra-chloride (SiCl,) and hydrogen (H,) flow where molecular-surface reactoos
liberate Si which, when absorbed into the preform, reacts with Mo to form 2
molybdenum di-silicide (MoSi,) mamrix. As a first step in modeling the RVT process.
we present 2 mathematical model of the diffusion of Si into a compressed-powder Mo
pellet to form the MaSi, matrix. The production of an intermediate (Mo ¢Si5) silicide
layer, the growth of the MoSi; layer, and the volume expansion of the pellet are
predicted. The model, consisting of a nonlinear ordinary and partial differendal sys-
tem, is solved using a state-of-the-art adaptive software system (3] that includes capa-
bilities for automatic quadtres-structured mesh generation. mesh refinement/coarseniog
(h-refinement), method order variation (p-refinement), and mesh mogon (r-refinement).
Computational solutions of one- and two-dimensional problems indicate that the adap-
tive software is a robust and effective ool for addressing composite-processing prod-
lems. When compared with experimental observations, the mathemarical model
predicts a parabolic growth rate of the silicide layer and the volume expansion of the
pellet to a high degree of accuracy. Aaticipated applications of the adaptive software
and enhancements 1o the mathemarcal model are described in a final secton

2. RVI MODEL
y com-

Patibandla et. al. [1,2] descnbe experiments where a pellet of a loosel
pacted (45% porosity) Mo powder is subjected in a furnace to a flow of SiCl, ad Hy
that reacts on the surface of grains of the peilet to liberate Si and hydrochlonc
(HCl). The Si is absorbed into the Mo peilet and reacts as

ky
SMo + 3Si —» Mo Sis @

10 form the silicide Mo .Sis, which qQuickly reacts as

k
Mo jSiy + 15i — SMaSiy @
(princt-

to form MoSi,. These reactions occur in narrow fronts with free Si diffusing ool
paily by solid-state diffusion) through an MoSi, layer to reach the reacgon 20
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The silicide-forming reactions (2.1.2) are accompanied by a 158% volume increase
which fills the pores between grains of Mo powder, but may cause cracking (1.2].

Suppose the pellet contains a mixture of reactants and products and let the mass
m; (g) of species ¢ at time ¢ in a control volume V be

m; = {PY,- dv. i=1,2,34, 2.3)

where p (g/cm?) is the mixture density and Y;, i = 1, 2, 3, 4, are, respectively, the
mass fractions of Si. MoSi,, MoSiy, and Mo. As the peilet deforms due to the
volume change, we specify the position of each material point x as a function of ¢
and its initial spatial position X. With this reference. considerations of mass conser-
vation for species i imply that
dm;
dt

where r; (g/cm 3/ser:) is the mass production rate and J; (g/cmzlsec) is the diffusive
flux of species i, dV is the boundary of V, n is the unit outer normal to a3V, and

v(X.t) = 9, x(X.1) (2.5)

=J'J,--ndc+£pY,~v-ndc+{i, v, i=1,2734, 2.4)
v

is the mixture velocity.
Assuming Fickian diffusion
Ji = =-D;V(pY)), (2.6)

with D; (cm?¥sec) the diffusivity of species i in the mixture, applying the divergence
theorem to (2.4), and using (2.3) yields the partial differential system
D(pY;)
Dt

-V-D,VpY)+pY,Vv=r, xef, t>0, i=12234, (272
where
BD; = 8, +vV (2'7b)

is the material derivative and Q is the spatial region occupied by the pellet at time f.

Mass production rates are much faster than diffusion rates and. thus, cannot be
observed. We assume that all reactions are irreversible and that they cease when one
Of more reactants are depleted. The form of the production rates shouid not
significandy affect the results, so, for simplicity, we assume that they are linear in
¢ach concentration to obtain

;'l = —M1(3W‘ + 7W7). I"z = 5M2W2, ;'3 = M;(Wl - Wz). (2.8a.b,c)
. pY, pYs pYy pYy
re= -5M4W1. w;= kl(—;’-;-)(-E-), Wy = kz(-;ir)(Tg) (2.8c.d.e)

The variables k- and k, (cm¥sec) identify the rates of the reactions (2.1,2) and
M, (g) denotes the molecular weight of species i = 1, 2, 3, 4 (cf. Table D).

The process has been assumed to be isothermal, which should be acceptable
- tince thermal variations produced by the reactions (2.1.2) have a negligible influence
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at the temperamre level of the furnace.

To include expansion, consider a volume V at time ¢ where each chemical occy.
pies the portion V;, i =1,2,3,4. Lewing V, denote the volume of the voidg
between chemical compounds. u(x.!) = VyV denote the porosity, p; =m,/V,
(g/cm’). i = 1,2, 3, 4, denote species densities (cf. Table I), using (2.3), and letting
V tend to zero gives

4
l-u=3
1=l)

<
>~

i m; Lo & pY;
=Y —=Y —|plidVv=Yy — (2.9
=t DiV Ea D.'Vl 1§I i

<|

Table [. Molecular Weight A; and Density p, of Each Species.

! 1 2 3 4
dpecies RY] Modts  Modi;, Mo
M, | 28 152° sea4 96
0; 234 624 7.38 10.2

Multiplying (2.7) by 1/f;, summing over i, and using (2.9), we obtain
D -1
-2 T -w = T L+ VDY) xeQ 150 @10
inl Py

The system is closed by assuming that the flow is irrotational (V x v = 0) and by
specifying a porosity function of the form W(x, t) = h(p.Y,, ---. ¥). Herein, we sim-
plify (2.10) by neglecting i, V'/V, and the diffusive terms. As noted. j is negligible
in the silicide layer. Its effect in the unreacted mixture may be included in the densi-
ues of the initial components. With very little free Si in the peilet. it is reasonabie o
neglect its contribution to the total volume. The diffusivities D,, D, and D, are
negligible relative to D). With small Si concentratons. its diffusion may also be
neglected when calculating the volume expansion. With these assumptions, (2.10)

becomes

4 5
Vovz Y - @1
ind Pj
Knowing the velocity divergence, we obtain the local volume change as
ﬂc:t_ﬂ = (det FXV'v) : (2.12)
t

where F is a matrix of the deformation gradients dx;/0X,, j, k = 1,2, 3, and detF is
its determinant,

Specification of initial and boundary conditions complete the model (2.7,11,12).

When, e.g., only Mo powder is present in the initial state, we prescribe
PXO) =p, Y (X0) =0 i=1(23 rEXo=1, wX0=0 XeQ ot
(2.13)

where J is the initial mixture density.
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witha > @ and S = 0.000_37.
3 COMPUTATIONAL RESULTS

We use ap adaptive fipjte element software System with capabilities for
automatic h., p., and/or r-refinement (3] to solve dimensionless versions of (2.7.8.11-
14) in one and two spaia] dimensions. With mesh modon, for example, we can boy
follow evolving fronts and frack the volume expansion as the reaction progresses,
The Particular Combination of p. and p-refinement is remarkably effective when high
accuracy s necessary. Mesh - iati

=1mm, qz= 06 @/cm¥/sec), and i, = L.5x 10 and k, = 1.5 x 102 (g/em?), we

Solve problems wig Dy =0.37x10%5, 1.5 109, and 42x g~ (cm</sec) and

D; = 1070 (o2, L 022,34 The three values of D correspond to observed
ivities of §i a1 fespectively, temperanyres of 1100, 1200, and 1300 (°C) (1.2).

We compare compyteq and observed (1,2] values for the square of the thickness
of the MoSi; layer a5 5 function of time for the three temperaryras in the left portion
e . .

Hght portion of Figyre 1. The MoSi, layer s progressing from right 1o left in Figure

L thus, the night-most curve is the Mass fraction of Mosi,, the steeply-peaked center

CXVe is the mags fraction of MoSiy, and the left-most curve s the unreacted Ao

The thin MosSiy layer moves With constant thickness a the reaction progresses,
ch agrees wi i .




06

e
- a
o y -
- oS
- [<Iln
33 §5.
- =3
8., < 3
361 ES_
~ < 27
3] A gs'-
3 38
- { §8
31 Qg-
L} a * 5:-
s , . i Q 1 T T T T T
e %8 100 e = A0 0.00.2 0.4 0.5 0.8 1.0 1.2 1.4
¢t (hrs) x(mm}

Figure 1. On the left, comparison of computed and observed values of the
square of the thickness of the MoSi, layer as a functon of time for tem-
peratures of 1100 °C (triangles), 1200 °C (plusses), and 1300 °C (dia-
monds). On the right, mass fractions of MoSi;, MosSiy, and Mo at
1200 °C and t = 9.2 hr as a function of position.

Figure 3, The mesh is concentrated near the front and moving to account for the
‘expansion as the reaction occurs. -

Production tmes can be reduced by starting with a mixture of Mo and MoSi;
(2). We compare computed and observed {2] values for the square of the thickness of
the MoSi, layer as a function of time in the left portion of Figure 3. Inital concentra-
tons consisted of all Mo; 50% Mo and 50% MoSi,; and 30% Mo and 70% Ago&z-
Corresponding diffusivities of Si in the mixture were D, = 1.5x 1075, 3.08x 107, and
3.08x 107 (cm¥sec). The reaction temperature was 1200 °C and all other parame-
ters were as specified in the previous computation. Computationally, we assume that
the initial Mo -MoSi, mixmre quickly reacts to form Mo Si; with an excess of either
Mo or MoSi, according to the phase equilibrium diagram. In particular, the 50%
Mo -MoSi, mixture reacts to form ail MoSi, at 2 61% porosity and we use this as a1
initial state with the software. With 30% Mo and 70% MoSi,, we begin with an ini-
tial state of 52% MosSiy and 48% MoSi,.

On the right of Fi 3, we present the relative change in volume as a functiof
of time with it;‘igtal congemuom of all Mo at 45% porosity and 50% Mo and 50%
MaSi; at 45% porosity. In order to give some indication of the effects of porosﬂ.Yu
we also present the volume expansion comesponding to an initial dense state of &
Mo. Production times are fastest with an initial mixture of 30% Mo and 70% MoSiz
because of the need to diffuse less Si and the doubling of the diffusivity with the
Mo-MoSi, mixture. This latter effect is not understood at this ime. Volume expas-
sion with the dense Mo inital state is excessive and can result in cracking. Stans$
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Figure 2. Method order and spatial mesh (left) and mesh position as 3
function of time (right). :

with an initia] A, -MoSi; mixture effectively eliminates €xpansion and will, hence,
result in a more Predictable marrix geomerry,

' ty. The
the one-dimensionaj €xamples with 2 lemperature of 1200 °C For simplicity, the
condition (2.14a) wag replaced by the Dirichlet condition PY, = L58SP. In
Figure 4, we present the mass concentration of MoSi; at 14.3 hours Obtained using
Plecewise linear finite element approximations with adaptive h-refinement 00 2 mesh
of triangy|ar elements. Wity Symmetry, we haye displayed the solutiog in a portion of
1 L of the pellet’s cross sectuon. Shading in Figure 4 jg proportional to the
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Figure 3. On the left, comparison of computed and observed values of the
square of the thickness of the MoSi, layer as a function of time for initial
concentrations of all Mo (triangles): S0% Mo and 50% MoSi, (plusses);
and 30% Mo and 70% MoSi, (diamonds) at 45% porosity. On the right,
relative change in volume as a function of time for initial concentrations of
all Mo with no porosity, all Mo at 45% porosity, and 50% Mo and 50%
MoSi, at 45% porosity (top to bottom).

As Mo grains react to form MoSi,, they swell to close pores and voids between
them and. eventually, exert forces on neighboring grains. The initial effect reduces or
eliminates fluid infiltration into the peilet and establishes solid-state diffusion as the
dominant transfer mechanism. The lamer effect creates a swress field that may induce
cracking [2] or residual stresses. Pores close quickly to choke fluid access with the
present initial porosities; however, we intend to model this process at the granula
level to better understand the effects of initial packing densities. Our software i§
capable of solving these fluid-solid interaction problems with varying geomeuics and.
if not useful in our RVI application. it may be used to address other chemical vapor
infiltration applications {5]. More realistic surface reaction models between solid
fluid phases will be introduced at this stage.

Even without gaseous infiltration, it is important to understand the closing of
pores in the interior of the pellet to ensure that the matrix material has a homogencous
structure and chemistry. This can be studied at the macroscopic level using the
(2.7.8,11-14); however, a preliminary study at the granular level is necssary,w-f;‘
least, identify an appropriate porosity function p(x.t) and other effective properues be
granular materials. Combined mechanical and chemical processing models will
subsequently developed with a goal of predicting cracking and residual stresses.

Future experiments will be performed with fibers embedded in a powder Pfef"vz
and our models will be modified to reflect this. Our investigation will seek 10 (€
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ABSTRACT

The paper introduces high temperature composite software developed for mechanism-based design of
composite structures. Mechanism-based design is characterized by an understanding of the critical composite
behaviors at several physical scales: the fibrous (micro) scale, the ply/weave (meso) scale and the laminated part
(macro) scale, and by the specification of the available design parameters to achieve functionality by those
behaviors. A software framework is described which integrates material modeling and analysis codes, provides
automated assistance, and links to material databases. Elastic and inelastic material modeling codes suitable for
high temperature composites with complex reinforcement and weave/lay-up configurations are presented and
references to their underlying theories are given. Advanced analysis techniques are outlined for numerically
efficient computational plasticity based on mathematical homogenization, idealization error indicators for material

. scale, three dimensional crack propagation in a fibrous composite, and modeling of reactive vapor infiltration and

chemical vapor deposition processes.

INTRODUCTION

Current research has been directed towards developing models of high temperature composite
thermomechanical behaviors and the processes associated with their fabrication and degradation. The composite
systems of interest include both metal matrix composites (MMC’s) and ceramic matrix composites (CMC’s), with
Al,0g3, SiC and W based reinforcements, and Al,O3, MoSi,, NiAl, SiC, and Ti based matrices. The approach used
has been motivated by current fabrication technology, which allows the material’s structure to be configured for an
application, and by the complexity of phenomena governing the material’s behavior during fabrication and during
subsequent loading cycles.

The mechanism-based approach involves modeling composite behaviors at several physical scales: e.g. the
fibrous (micro), the ply/weave (meso) and the laminated part (macro) scales, and by linking the behaviors at each
scale. The techniques developed can be applied to design analysis by the formulation of the appropriate idealized
models at the relevant scales and the integration of those models while controlling idealization errors through multi-
scale, adaptive or heuristic means. An important result of the project has been the implementation of mechanism
based modeling techniques as computer codes.
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The new capability can support the understanding of the relationships between a material system’s meso/micro
structural design parameters and its large scale functionality. For example, design changes in the reinforcement’s
shape and orientation can be related to the overall composite properties and hence to a part’s deflection under load.
In the reverse change-of-scale, a macro scale cooling hole configuration under a particular thermal-mechanical
loading can be linked to the type and proximity to fiber-coating-matrix debonding. Mechanism-based models allow
both altemative material and component designs to be evaluated more quickly without the expense of testing all
macro scale configuration/environment permutations, and can even aid the design and sizing of test fixtures for
those tests which are still needed.

The rest of the paper outlines the supporting software system, the material modeling and some of the analysis
techniques required to support the design of high temperature composites structures. The system overview
describes the capabilities developed, the assistance provided application of the codes by non-experts, and the
material property management issues. The material modeling section briefly describes the capabilities and models
developed. The analysis section describes results for computational plasticity, error control for laminates, advanced
multi-scale analysis techniques needed for the coupled behaviors exhibited by HTC structures, and process
modeling.

SYSTEM OVERVIEW

A set of software framework tools has been developed (Beall et al., 1994) to integrate and facilitate application
of the material modeling and analysis codes to design problems. The framework accommodates a spectrum of
solution cost and reliability alternatives, in order to support the different design process stages, and provides
application expertise and visualization tools. The system applies existing commercial packages where possible. The
framework tools integrate the material modeling and analysis techniques. Both of these codes groups can still be
operated separately or combined and linked with other user codes.

The software interacts with a database housed s in the Mvision™" format and conforms to, or can be translated
into ASTM and applicable PDES/STEP standards (PDA, 1993). The high temperature database contains more than
3Z) material systems or constituents, 18,000 values, and 180 material characteristics. Geometric modeling tools,
built on the kernel of commercial geometric modelers, create micro-structures, weaves, plies and component scale
models and source their data from a spreadsheet. The spreadsheet format allows users to arrange and annotate data
to suit their needs, tie together design parameters for automatic updates, and to implement “back of the envelop™
computations.

An analysis attribute code links material, boundary condition and other attributes with the corresponding
geometric entities, for instance, associating a debond strength with a fiber/coating interface and a chemical
concentration distribution with a matrix region of a model In addition, finite element results on a mesh are
mappable to the mesh of another analysis by means of therr common geometric entity. Representative volumes
containing the most important geometric entities are readilv  nstructed from a library of constituents, typical
flaws, 2tc., and these entities can be related to behavioral projwiisy 1o associated attributes. Automatic meshing
tools, generic mesh operations and data structures, and the inertices to multiple finite element analysis codes
complete the integration of automated modeling tools for FEA +Beuli et al., 1993).

User application and assistance

Expertise in several areas, including material and process modeling, analysis techniques and detailed software
operation need to be applied simultaneously for reliable HTC analysis. High temperature composite material
technology is evolving rapidly, requiring flexible application of mechanism based design tools rather than execution
of prescriptive or handbook design procedures. This means that the software must support a process of 1) definition
of the required functionality, e.g. control heat flow in a given direction, resist a set of loading conditions within
prescribed deflections, self-heal when damaged, etc. ii) development of the material behaviors and geometric
features to support those functions, and iii) specification of the type of analysis results, cost (time) and reliability
needed to confirm the goveming behaviors or define unknown design parameters. The resulting description of the
design and the analysis characteristics constitutes an “analysis goal”, and is the starting point for automatically
selecting and assembling material modeling and analysis codes to achieve it. The goal description is converted into

* M/VISION is a registered trademark of MSC/PDA Engineering.
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a plan, represented in part by a data flow model, and the plan is refined into a sequence of code executions. The
result is a “strategy”, the execution of which provides the desired results to the uscr.

The approach requires translation of concepts and nomenclature for the user and the management of
information on code capabilities and operation. Code capabilities may be controlled by the underlying theory or the
current implementation of the theory and arc modeled in terms of their required/optional inputs and outputs,
restrictions on values, cost, reliability, and a classification of the behavioral assumptions used. These code attributes
determine its “applicability” for strategy creation and require hierarchal and relational data structures. The
information can be used to translates between the concepts and nomenclature of the mechanism based designer and
the appropriate composite theory, and to automatically assemble strategies based on compatible data flow and
underlying modeling assumptions. The implementation of the approach requires the framework tools described
earlier to facilitate material modeling and analysis, and a standardized exchange of data between codes developed
from multiple sources.

A data flow schematic of a basic composite ) Desirea

. . . . Design Interfaces Unknowns
property strategy is diagramed in Figure L. The

Spreadsheet

arcs indicate the type of information shared by _
the boxed computational functions. The goal is to Material Db T (Laminate Properties)
estimate linear elastic laminate properties in L
seconds from given constituent properties, micro- MicroiMesc fam
structural and ply lay-up. The method used can Applicability N )
depend on the shape of the reinforcement, and o Reasoning Lay-up |Laminate
this aspect of the applicability would need to be Memé& ¢ routines

" refined based on the user input before any code , L
would be executed. K1_iso Conversion i

From the user’s perspective, the execution of routines [ L Ply_Stiffness routines
the analysis goal is no more involved than using L,E— 2 Ar )
any other spreadsheet function, requiring no  |Shape | Eshelbys | S I——‘——~ !
expertise  or involvement in  software Lyt routine — A
I

development. The current design parameters are 1 '
recovered from the spreadsheet, and transferred
to the goal processor. If data is missing or out of
the applicability range of available strategies, then the user is informed of the specific problem, otherwise the
results are automatically computed and returned to the spreadsheet, used as input for other analysis (as shown), or
displayed by visualization code, e.g. such as the plots of Figure 2 and 3.

Figure 1: Data Flow for Laminate Properties

Material Property Management

Several database related features are available which either directly support the conceptual design process in
material selection, or support analysis strategies. Matenal data requires the structuring of data so as to define not
only the value to be used in an analysis, but also the scale, specimen characteristics, source of data and the
environmental parameters of the test - the “pedigree”. Reliable analysis requires that the pedigree be consistent with
the underlying analysis models, so the extraction of relevant data is related to the creation of strategies from
modeling codes. For example, the modulus of a $iC/SiC CMC will not only vary with temperature, but also with
time depending on the degree of micro mechanical damage before the measurement and the presence of water and
oxygen. The material database is not only a source of material parameters, but also a source of known behaviors
caused by the environment. Translation between the standard procedures and nomenclature of the testing
community and the material parameter needs of analysis and design functions is also required in order to obtain
meaningful data. ‘

Sources include published papers, industry data sheets, handbooks, and test data generated at Rensselaer.
Constituent properties (matrix and reinforcements), data for dog-bone and tubular test specimens, and durability of
tested parts in oxidizing and corrosive environments are stored. Manufacturing size, porosity or volume fraction
limitation data are available where supplied by vendors, and background documentation and SEM images of
material systems are also accessible. The database facilities can be configured for automated search and merit
indicy plotting (Ashby, 1992).
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MATERIAL MODELING

Software tools described here include linear elastic property estimation codes, initial failure maps of the
constituents and their interfaces, and mathematical homogenization of unit cells with complex geometries. Their
capabilities are presented and some example results are shown.

Linear Elastic Properties and Limits

Routines are available to predict overall material properties for T Computed Propertles
linear elastic analysis in terms of constituent thermo-elastic properties, EFFective Trandverse Young's Fodulus (GP)
volume fractions, and micro-structural geometry. tI'hose related to ply wf :%‘grﬁ_
properties are the Hashin-Strikman Bounds (Hashin and Rosen, 1964) ol \ Se1F-Consi stent —-
for the overall elastic moduli of two-phase composites, the Mori-Tanaka of - N0

(Mori and Tanaka, 1973) and the self-consistent methods (Teply and
Dvorak, 1988), providing estimates for several reinforcement shapes in
either aligned or random configurations. Figure 2 compares the methods
for the overall transverse modulus of a fibrous ply as a function of
volume fraction and Figure 3 visualizes trends in overall elastic axial ,
shear properties as a function of volume fraction and temperature. 0 2 forcmae ooz racti 8
Additional codes evaluate linear coefficients of thermal expansion (CTE) »

of two-phase or multi-phase composite materials in terms of overall and Figure 2: Method Comparison
phase elastic moduli, phase CTE’s and volume fractions.

Other codes evaluate mechanical,
thermal, and transformation concentration
factors, which are useful for estimating phase
stress and/or strain averages in two-phase and .
multi-phase composites subjected to uniform . ) 90,4 —
overall stress or strain, a uniform change in | 611 - cra N
temperature, and uniform eigenstrains in the
phases (Dvorak and Benveniste, 1992). If
properties for a constituent are not available
from tests, they can be computed “in-situ” by
the Mori-Tanaka or self-consistent methods
from known overall moduli, phase volume
fraction, and the known properties of the
other constituent. Figure 4 shows the results
of a strategy to study the effects of variations
in reinforcement aspect ratio and volume
fraction on the effective axial shear modulus
of a single ply. The designer can easily see
the effects of changes in both application
temperature and volume fraction.

At the next larger scale, the plane stress stiffness, the compliance of asymmetric laminated plates under
uniform in-plane loads, and the transversely isotropic coefficients of thermal expansion of a symmetric laminated
plate under a uniform temperature can be estimated. Codes evaluate the mechanical, thermal, and transformation
distribution factors, leading to average stresses in plies of a symmetric laminated plate under uniform in-plane
loads, temperature change, and ply eigenstrains. Other supporting routines evaluate the Eshelby tensor for
transformed homogeneous inclusions of an ellipsoidal shape in an anisotropic solid, compute the P-tensor for an
ellipsoidal inclusion in an anisotropic solid, perform numerical operations with tensors or mathematical
expressions, and convert between elastic constants, stiffness and compliance matrix forms.

Initial brittle and plastic material failure of fibrous composites due to thermal-mechanical loading can also be
predicted by the software. Debonding at the interfaces between the fiber, coating and matrix, and fracture of the
fiber, coating or matrix materials are predicted for symmetric laminated plate configurations. The software
implements the theory found in (Dvorak, 1992), (Dvorak and Benviniste, 1992), {(Dvorak et al., 1992), by mapping

1
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Figure 3: Ply Property Trends
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macro scale FEA temperatures and stress distributions onto the micro-mechanical failure map mode!. The model
accounts for residual stress effects due to a difference between a stress free state, e.g. the processing temperature,
and operating temperature. The models uses the linear elastic constituent properties, composite configuration and
known allowable stresses in or between phases: fibers, coatings, or matrix.

Figure 5 (left) shows the application of the failure B Property vs. Aspect Ratio
surface codes to the inside “hot” layer of a thermally loaded 40
ceramic combustor geometry with cooling and other Effective Axial Shear Modulus (GPa) gg;%%
hardware holes. Elements are shaded based on their 120 ' 3

proximity to the given debond strength limit, indicating
potential problem areas on the part. Similar distributions are 100

available for other material failure modes. An animated mf
stepping “through the thickness” helps visualize interior-

exterior trends. Figure 5 (right) applies the model in an sob
alternative format, plotting the required matrix cracking - PN e
strength for each element in the combustor above as a | 55550 o006 0.2 1 + 7er01 o0l

function of temperature. Other codes are available to predict
the onset of material plasticity (Dvorak and Bahei-El-Din,
1987).

Figure 4: Aspect Ratio Variations
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Figure 5: Failure Map Applications

Unit Cells

The classical mathematical homogenization theory for heterogeneous medium has been generalized (Fish et
al., 1996a) to account for eigenstrains. The resulting method first defines a three dimensional geometric model of a
unit cell, assigns constituent material properties, automatically meshes the geometry, and then analyzes the model
for homogenized properties. The software framework provides facilities to automatically create the unit cell
geometric models from size parameters of the constituent features. Though it is computationally more expensive
than other methods, it is useful for geometrically complex microstructures where a representative geometry can be
defined. Unit cell modeling has been used in the multi-scale computational technique and for non-linear analysis
with a plasticity model (Shephard et al., 1995). Given an appropriate representative geometry, it can also predict
linear elastic properties for woven composites for use directly with conventional macro-scale analysis tools and can
be readily adapted for thermal conductivity and chemical diffusion problems. Unit cells for oriented fibers, periodic
“random” fibers, periodic “‘random” particles, and plain weave fabrics are available, see Figure 6 below. Unit cells
for other woven fabrics, defects and more complex three dimensional fiber architectures are under development.
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Particulate

Figure 6: Unit Cell Geometry and Mesh Examples

ANALYSIS OF COMPOSITE STRUCTURES

Computational Plasticity for Composite Structures Based on Mathematical Homogenizatio

The computational challenge of
solving  nonlinear  heterogeneous
systems is enormous. While for linear
problems a unit cell or a representative
volume problem has to be solved only
once, for nonlinear history dependent
systems 1t has to be solved at every
increment and for each integration
point. Moreover, history data has to be
updated at a number of integration
points equal to the product of
integration points at all modeling
scales considered. To illustrate the
computational complexity involved we

Exhaust Nozzle Flap Unit Cell Mesh

Figure 7: Engine Flap Example

consider elasto-plastic analysis of the two-scale composite flap problem shown in Figure 7. The macrostructure is
discretized with 788 tetrahedral elements (993 unknowns), whereas the microstructure is discretized with 98
elements for the fibers and 253 elements for the matrix. The CPU time on a SPARC 10/S1™ for this problem was 8
hours, as opposed to 10 seconds if metal plasticity was used instead, which means that 99.7% of CPU time is spent

on constitutive evaluation in the unit cells;
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The application of a novel modeling scheme based on mathematical homogenization theory with eigenstrains
(Fish et al., 1996a) and transformation field analysis (Dvorak, 1992) enables the solution of these large scale
structural systems in heterogeneous media at a cost comparable to problems in homogeneous media without
significantly compromising on solution accuracy. The approach represents a breakthrough compared to. existing
modeling schemes which are either too inaccurate to provide reliable solutions for difficult problems, or too
expensive due to the computational complexity involved. ‘

The heart of this new technique is the generalization ot the 3 Seon
classical mathematical homogenization  theory  for
heterogeneous medium to account for eigenstrains (Fish et al.,
1996a). Starting from the double scale asymptotic expansion
for displacements and eigenstrains we derive a close form
expression relating arbitrary eigenstrains to the mechanical
fields in the phases. Subsequently, the overall structural
response is computed using an averaging scheme by which
phase concentration factors are computed in the average sense

A

3.0e-02 “7F
2.5¢-02
2.0e~02

1.5e-02

1.0e—02

for each phase, i.e. history data is updated only at two/three ) 3.0e-03
points (fiber and matrix/ interphase) in the microstructure, one -y 0 0eso0 ﬁ
for each phase. Macroscopic history data is stored in the data

base and then subjected in the post-processing stage onto the Figure 8: Unit Cell Relative Error

unit cell in the critical location identified by microscale
reduction error indicators.

For the flap problem considered in Figure 7 the CPU time for the averaging scheme with variational micro-
history recovery is only 30 seconds on SPARC 10/51™ as opposed to 8 hours using classical mathematical
homogenization theory. Figure 8 shows that the maximum error in the micro-stress in the unit cell located in the
critical region is onl)" 3% in comparison to the classic homogenization theory.

Idealization Error Estlmators

Idealization error estimators for laminated composite shell structures developed in Fish et al. (1994a), Fish et
al., (1994b) are aimed to quantify three sources of errors and to address the following issues:

i. What are the regions within the problem domain where the macromechanical description (shell model),
which is the most inexpensive modeling capability, is insufficient, i.e., where the shell model introduces
unacceptable errors with respect to a more comprehensive ply-by-ply (mesomechanical) model. Idealization error
estimators should be able to identify not only the precise location within the plane of the shell, but also the layers
within the laminate where the use of mesomechanical description may result in unacceptable errors of interlaminar
stresses.

The Dimensional Reduction Error estimator (DRE) developed in Fish et al. (1994a) builds on a combination of
mechanistic insight and a rigorous mathematical approach. By this technique the dimensional reduction error is
approximated by a linear combination of some basis functions in the auxiliary mesomechanical finite element mesh
that accurately represent the kinematics of individual plies (Fish et al., 1994a).

ii. Enriching the fundamental kinematics of the equivalent single-layer (macro) model with a discrete-layer
(meso) model in the vicinity of the most critical layers enables to model various failure modes on the lamina level
such as delamination. Unfortunately, in many cases the mechanism that causes failure is at a smaller scale - the
scale of microconstituents. A common computational rationale today is to investigate various microprocesses that
may lead to a progressive failure by considering a unit cell or a representative volume problem. The mechanisms
that allow us to do so are the classical assumptions of periodicity and uniformity of macroscopic fields. However, in
the areas of high stress concentration, which are of critical interest to the analyst, periodicity assumptions are not
valid, and thus the application of conventional homogenization techniques in the “hot spots” may lead to poor
predictions of local fields. '

The adequacy (or lack of it) of the homogenization theory has been studied in Fish et al. (1994b) on the basis
of assessing the uniform validity of the double scale asymptotic expansion, which serves as a basis of mathematical
homogenization theory. The quality of the homogenization has been assessed on the basis of the relative magnitude
of the first term neglected by the classic homogenization theory to those taken into account.
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A closed form expression for an idealization error estimator associated with the microscale reduction has been
derived in Fish et al. (1994b). The Microscale Reduction Error (MRE) estimator relates the homogenization (or
scale reduction) error to macroscopic fields (strain and strain gradients) and to the details of microstructure
(compliances of phases, volume fraction and the size of the unit cell). It has been found that there are four factors
affecting the homogenization error: (i) the size of the unit cell in the physical domain Y, (ii) the mismatch
parameter, (iii) the volume fraction, (iv) the strain gradients on the macro-scale.

Besides the discretization error indicators there are other sources of idealization errors, such as microstructure
randomness, material and geometric nonlinearities, which so far have not been considered.

Fast adaptive Iterative Solvers for a Heterogeneous Medium

The multigrid technology with special inter-scale connection operators has been developed in Fish and Belsky
(1995a), Fish and Belsky (1995b), Fish et al. (1996a). The multigrid procedure starts by performing several
smoothing iterations on the micro-scale in the regions identified by MRE indicators. Consequently, the higher
frequency modes of error are damped out immediately. The remaining part of the solution error is smooth, and
hence, can be effectively eliminated on the auxiliary coarse mesh. It has been shown (Fish and Belsky, 1995a),
(Fish and Belsky, 1995b), (Fish et al., 1996a) that the finite element mesh on the meso-scale (ply level) serves as a
perfect mechanism for capturing the lower frequency response on the micro-scale. Therefore, the residual in the
finite element mesh on the micro-scale is restricted to the meso-scale, while the smooth part of the solution is
captured in the finite. element mesh on the meso-scale. The oscillatory part of the.solution on the meso-scale is
again damped out by a smoothing procedure. The lower frequency response on the meso-scale is resolved on the
macro-mesh (shell level). The resulting solution on the meso-scale is obtained by prolongating displacements from
the macro-mesh back to the finite element mesh on the meso-scale and by adding the oscillatory part of the solution
previously captured on the meso-scale. Likewise, the solution on the micro-scale is obtained by prolongating the
smooth part of the solution from the meso-scale and by adding the oscillatory part that has been obtained by
smoothing. This process is repeated until satisfactory accuracy is obtained.

The adaptive - strategy, —
illustrated by example in Shell (Macro) model ---:.
Figure 9, starts by employing e N
Discretization Error indicators
and adaptively refining the
finite element mesh on the
macromechanical (shell) level
to ensure accurate Macro-

. P 3 .
solutions. Subsequently, ¥ZN Composite Box witha Mole 2.Stmin Energy Density
Dimensional Reduction Error :

(Fish et al., 1994a) indicators
identify the areas where the
most  critical  interlaminar
behavior takes place, and
consequently, a more
sophisticated discrete layer
model is placed there. Fast
iterative solvers based on the
multigrid  technology  with
special inter-scale connection P - — e e
operators (Fish and Belsky, 6. 3, in the mioroztruoture 5. iorozaale Recfuation Errors . & Strain Pnergy Density
1995a), (Fish and Belsky, ' '
1995b), (Fish et al., 1996a) arc
used 1o solve a coupled two- Figure 9: Multi-scale Example

scale Macro-Meso  model. .

Once the phenomena of interest on the Macro-Meso levels have been accurately resolved, Microscale Reduction
Error (Fish et al., 1994b) indicators are used to identify the location of critical microprocesses and consequently, a

¥
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micro-mesh is placed there. The three-scale coupled Macro-Meso-Micro model is again solved using a three-scale
multigrid process (Fish and Belsky, 1995a), (Fish and Belsky, 1995b), (Fish et al., 1996a). Finally, Discretization
Error indicators and adaptive refinement strategy are employed simultaneously at three different scales to ensure
reliable multiscale simulations.

The three-scale model described in Figure 9 contains over 1,000.000 degrees-of-freedom. The estumated CPU
time for solving it with conventional solvers based on skyline storage is over 700 hours on a si‘ngle processor
SPARCstation 10/51™, which essentially makes the model unusable from the practical point of view. Using a
special purpose multigrid technology for heterogeneous media developed in (Fish and Belsky, 1995a), (Fish and
Belsky, 1995b), (Fish et al., 1996a) the same problem has been solved in less than 16 hours on a single processor
SPARCstation 10/51™, turning it into an overnight job

The derivation of the inter-scale transfer operators is based on the asymptotic solution expansion. The
asymptotic forms of the prolongation and restriction operators were obtained by discretizing the corresponding
asymptotic expansions, For unit célls of finite size the regularization functions were introduced (Fish and Belsky,
1995b) in order to obtain well-posed inter-scale transfer operators, termed homogenization based operators.

The rate of convergence of the multigrid process has been studied in Fish and Belsky (1995a). It has been
proved that if the stiffness of a fiber is significantly higher than that of a matrix, then the multigrid method
converges in a single iteration. This behavior of the multigrid method for heterogeneous media together with its
linear dependence on the number of degrees-of-freedom, makes it possible to solve large scale coupled global-local
problems with the same amount of computational effort, ‘or faster, than would be required to solve the
corresponding uncoupled problem using direct solvers.

Crack Growth Simulation

In Beall et al. (1996) the crack growth analysis methodology that accounts for the dominant influence factors
affecting crack growth on the micromechanical level has been investigated. An automated system has been
developed that explicitly represents the microstructure of the composite at the crack front while using homogenized
material properties elsewhere. Procedures for automatic construction and update of the models and meshes used in
the analysis have been developed in order to avoid any time consuming human intervention. Figure 10 shows the

Macro Scale Specimen ' Macro to Micro Scale Transition Mesh

N

Four Fibrous Unit Cells

Crack After 5 Growth lterations

A

S T
sy

Figure 10: Crack Propagation Models
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evolution of the micro-crack growth in the turbine blade. It has been found (Beall et al. 1996) that there is a
significant difference in the crack growth pattern when accounting for the microstructure. Crack propagation
criteria in the microstructure is based on the energy release rates, fracture toughnesses of the microconstituents and
their interface (He and Hutchinson, 1989)

Process Modeling
The process modeling codes simulate the time

varying production, or degradation, of composite
materials. The models include the reaction and transport
of chemical species and material flows. Altering process
parameters can improve production rates and/or minimize
defects. Product designers can estimate processing
residual stresses or simulate oxidation/hot corrosion for
life prediction. Codes have been applied to the reactive
vapor infiltration process for forming MoSi, from Mo
powder, CVD fiber coating with PBAly03, and for
oxidation simulations of SiC composites (Adjerid et al.,
1995), (Adjerid et al. 1996). Inputs for the general code
are the initial geometry and mesh, process attributes per
phase, and boundary condition distributions as a function
of time. Models input to the code are categorized as
chemical reaction models, expansion, mechanical models
for solid phases, diffusion models of gaseous phases, and
surface models for phase interfaces. Error control
parameters are given for the adaptive refinement
techniques. Outputs are the time varying volume change,
shape, velocity, temperature, concentration and pressure
fields.

Figure 11 shows one frame of a result for the BAl>03
coating simulation. The image is a cross section of a
tubular reaction chamber, through the center of which
moves the fiber to be coated (left). Reactants,
concentrations of which can be shown in color, are injected at the bottom of this design. and the flow field of the
gaseous phase is indicated by the vectors. The code is currently used to both optimize and control the actual
production hardware. Results can be animated to show the dynamic behaviors resulting from the initial design
geometry and boundary conditions.
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Figure 11: Fiber Coating Simulation

CONCLUSION

Success with high temperature composites has required progressively more complex micro-structures and
behavioral understanding. Design requires support by mechanism based analytical tools to take full advantage of
HTC properties and to avoid material failures. The models and tools developed, integrated with their supporting
framework, are capable of simulating key composite behaviors and processes at multiple scales
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Abstract. Babuska and Yu constructed a posteriori estimates for finite element
discretization errors of linear elliptic problems utilizing a dichotomy principal stating that
the errors of odd-order approximations arise near element edges as mesh spacing decreases
while those of even-order approximations arise in element interiors. We construct similar
a posteriori estimates for the spatial errors of finite element method-of-lines solutions of
linear parabolic partial differential equations on square-element meshes. Error estimates
computed in this manner are proven to be asymptotically correct: thus, they converge in

strain energy under mesh refinement at the same rate as the actual errors.
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1. Introduction. A posteriori estimates of discretization errors have been an integral
part of adaptive finite element methods since their inception hearly twenty years ago [5,
6]. Local contributions to global error estimates furnish error indicators that are typically
used to control adaptive enrichment through mesh refinement/coarsening (h-refinement)
and/or method order variation (p-refinement). Thus, meshes are refined and/or method

orders increased where error indicators are large and an opposite course is taken where
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error indicators are small. An ideal a posteriori error estimation techniques would

i.  be asvmprotically correct in the sense that the error estimate in a particular norm

approach zero under enrichment at the same rate as the actual error;
ii. be computationally simple by requiring a small fraction of the solution cost;

iii. be robust by furnishing accurate estimates for a wide range of meshes and method

orders;

iv. provide relatively tight upper and lower bounds of the true error in a particular norm;

and
v. supply local error indicators that provide global error estimates in several norms.

Recent surveys [8, 9, 16] indicate that no error estimates satisfy all of these criteria for all

combinations of meshes, method orders, geometries, etc.

BabuSka and Yu [10, 18, 19] constructed a posteriori error estimates in strain energy
for the finite element solution of linear elliptic problems on square domains by using a
dichotomy principal stating that the errors of odd-order approximations arise at element
edges as the spacing of a square-clement mesh decreases to zero while those of even-order
approximations arise in element interiors in the same limit. Yu (18, 19] established the
asymptotic correctness of these error estimates for finite element spaces consisting of
piecewise bi-polynomials of arbitrary degree. Adjerid et al. [3] showed that similar esti-
mates could be obtained for the spatial discretization errors of method-of-lines solutions of
one-dimensional parabolic partial differential equations. We extend this earlier work by
constructing a posteriori estimates for the spatial errors of finite element method-of-lines
solutions of two-dimensional linear parabolic equations. We establish asymptotic correct-
ness of these error estimates on square elements and show that temporal variations of spa-
tial errors may be neglected for both odd- (§3) and even-order (§4.2) finite element solu-

tions. Error estimates of even-order finite element solutions may also be obtained by
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solving local parabolic problems (§4.1), which include the temporal variation of the error
estimate. This procedure might be useful when error estimates are used to control mesh

motion (r-refinement) [2].

Both odd- and even-order error estimation procedures are computationally simple.
The odd-order estimates only require jumps in solution gradients at the four element ver-
tices and neither element nor edge residuals are needed. Only nearest-neighbor interaction
is necessary; thus, simplifying implementation on a parallel computer. Gradient jumps
may be shared between elements sharing a vertex to halve the cost relative to element-by-
element computation. The even-order elliptic and parabolic estimates are local to the ele-
ment. No off-element communication is necessary; hence, there is no search for neighbor
informatiqn and parallelization is perfect. Computations (§5) imply that the even-order

estimates improve with increasing polynomial degree.

Numerical examples presented in §5 énd elsewhere [1] indicate that the error esti-
mates are applicable more widely than the present theory would suggest. Thus, for exam-
ple, they appear to work in the presence of some nonlinearity, when some singularities are
present, and on graded quadrilateral-element meshes. Experiments of Baehmann et al. [4]

and Ilin et al. [11] would suggest that the even-order estimates are applicable to triangular

elements.

2. Formulation. Consider the linear, scalar, two-dimensional parabolic differential

equation

du+Lu=f(x), x=[kx,17€Q, t>0, (2.1a)
with

2 2 '
Lu ==3 3 0,(a;,(x)d,u) + b(x)u, (2.1b)
j=1k=1 ,

on a bounded rectangle Q subject to the initial and Dirichlet boundary conditions

u(x,0) =u'(x), xeQyoQ, (2.1¢)
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u(xt)=0, xeodQ, tz20. (2.1d)

The functions a; ((x), j, k =1, 2. and b(x) are smooth with L being a positive-definite

operator.

The Galerkin form of (2.1) consists of determining u € H (} satisfying

(v,o,u)+A(v.u)=(.f) t>0, (2.2a)

Avu)=Au®, t=0, foral veH{, (2.2b)
where the strain energy and L? inner products, respectively, are

2 2
Au)=[[[Z 3 a; 4 (X3, va,u +b(xvuldxdx, (2.2¢)
Q j=lk=1

and
(vu) = (v.u)g = [Juv dxdxy, (2.2d)
Q
As usual, functions in the Sobolev space H®, s 2 0, have the inner product and norm

i)y = Y @pidew dgideiu), Mullf = (uu)g, (2.2¢,0)

laigs
where latl = o + o). The subscript 0 on H' additionally restricts functions to satisfy

(2.1d).

Finite element solutions of (2.2a,b) are obtained by approximating H ! by a finite-

dimensional subspace S¥# and determining UeS) ¥ such that

Vo, U)+ AWV, U)=(V.f), t>0, (2.32)

AWV, U)=AWVu®, t=0, forall VeS§~. (2.3b)
Partitioning Q into a uniform mesh of square elements A;, i = 1,2, ---, N, define § Np ‘as
SVN? = {weH'lwx)e Q,(A), xe A, i=1,2,,N} (2.4)

where O, (4;) is the space of bi-polynomial functions that are produéts of univariate poly-

nomials of degree p in x, and x, on 4;.




The following two lemmas describe standard interpolation and a priori discretization

error estimates for finite element solutions of (2.2) that will be useful during the subse-

quent analysis.

LEMMA 2.1. Ler W e S§7 be an interpolant of w € H§ ~HP* that is exact when

w e QI7 (). Then, there exists a constant C > O such that

IW = wll, < Ch?*'=|pwll,,, s =01, (2.5a)

where

h =1~N. (2.5b)

Proof. Cf., e.g., Oden and Carey [12]. O
LEMMA 2.2. Let u and U be solutions of (2.2a,b) and (2.3), respectively. Further let

AV.U)y=A(Vu), forall VeSY», t20, (2.6)

be the strain energy projection of u onto SY?. If ule H} mHz and u is smooth

enough for all terms in (2.7) to be bounded, then there exist C > 0 and to > 0 such thar

t
10 - Ul < ch¥e+df 19, u ¢ N2 dT, £ 20, (2.7a)
0

{
I8¢ C.)llp < CRP*H [y + X 10/l +y + [ 107 w0,y dT
=0 t -1ty

!

+ [IB,uCDlhdtl, t>1>0, n 20, (2.7b)
0
. P
Io7e C.0)lly < ChP Q1w + 3, max [19/uCOllys + | | 107 u(l|2dt
1=0 f—to<T<t t~ty
l .
+ hllullly + RfIf lodt], ¢ >20>0, n 20, (2.7¢)
0

where
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e(x.t) =u(x.t) = Uxr). (2.7d)
Proof. Cf. Wait and Mitchell [17], e.g., for the proof of (2.7a) and Thomée [15] for

the proofs of (2.7b) and (2.7¢). O

2.1. Preliminary considerations. Let {Z] be the univariate operator that interpo-
lates functions in Hd (T-h/2,7+h/2) at the Lobatto points of degree p +1, p 21, on

[T-h/12.Z+h12]). Also let

Y, (F2) = 2P - mZIeP (2.8)
vanish at these p + 1 Lobatto points. Hence, W, (Z.2) and V', 41(Z:2) are, respectively,

proportional to Lobatto and Legendre polynomials on [Z-h/2,7+h /2], with ()" denoting

ordinary differentiation.

We use T to define a two-dimensional interpolation operator 7; on element i satisfy-
ing T u(x) = R[¥, ; JR[X,;Ju(x) € Q,(4;), x€ A;. Since the mesh is uniform, we will omit
the elemental index i and the dependence of %[%; ;] and W(X;;.x;) on the coordinates of

the cell center (¥ ;,%5;), 1 = 1, 2, ---, N, whenever confusion is unlikely.

The functions W, (x;), j = 1, 2, provide the dominant contributions to the spatial
discretization error on element A for both odd- and even-order finite element approxima-

tions. Indeed. we shall show that estimates E (x,t) of e (x,t) have the form

E(x) = by(OW, () + bV, (xy), XA 2.9)

The following sequence of lemmas take steps in this direction.

LEMMA 2.3. Letu e HP*2, 1t 20, then

u(x,t) — mu(x,t) =o0(x,t) + ¥(X,t), Xe€A, (2.10a)
where

0(x,t) = Bi(OW, 1 (x1) + Bal)Wp 11 (X2, (2.10b)

1070l o < CRPHIS 110Ul 1100 £ 20, 720, s=0,1,-,p, (2.10c)




I

19, Ollo.s < ChP llutllyyae J =12, 20, (2.10d)
My 4 S CRP flull, a0y, s =0, 1 p + 1, (2.10¢)

and
10, Wil o £ CAP* S Il 00 s =01, j=1,2, t20. (2.10f)

Remark. Local Sobolev norms are defined like their global counterparts (2.2d,e) with

€ replaced by A.

Proof. Yu’s [18] results for elliptic partial differential equations extend directly to

the transient case. []

LEMMA 2.4. Let Tlu € SY? be an interpolant of u € HP*? for xe Q that agrees with

T when Xe A, then

AW i = Tu)l < ChP*Yull, oW, for all W(x)e SYP. 2.11)

Proof. cf. Yu [18]. (O

LEMMA 2.5. Letue H/ HPY2 UeSN? and Ue SNP . be solutions of (2.2a,b),
0M 0 0

(2.3), and (2.6), respectively. Further let Tlu e S g P interpolate u as described in Lemma

2.4, then

10 - Tl € ChP Yull, 0 IV = Tully € Cw)RPH, (2.12a,b)
and

e(x.t) = P(x,t) + O(x,t) (2.13a)
where the restrictions of ®(x,t) and O(x,t) to A are ¢(x,t) of (2.10b) and

B(x,t) = v(x,t) + mu(x,t) - U(x,t). (2.13b)
Furthermore,

IVOl§ < Ch¥ |lullfy;, [IVOIE < Cu)h2P+D, (2.13c;d)
and

I0/@ll, < Cu)hP*=5, n 20, s=0,1, t>1, (2.13e)
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Proof. Subtract A(V,[lu) from (2.6) and use (2.11) to obtain
AV, U=TL)l = 1A (V u-Tlw)l < ChP N, oIV, forall Ve SYP. (2.14)

Replacing V in (2.14) by U - Tu vyields (2.12a). Addition and subtraction of Ut
U - Tu and subsequent use of the triangular inequality with (2.7a) and (2.12a) establishes

(2.12b).

In order to prove (2.13c-e), use (2.10a) and (2.13b) to obtain

e=u-—-tu+tu-U=0+y+mu-U=0+8, xel, (2.15)
and, consequently, (2.13a). Squaring and summing (2.10d) over the elements of the mesh
leads to (2.13c). Taking the gradient and L? norm of (2.13b) and using the triangular ine-
quality yields

VOl < CUITHIGA + IV = DIIGY) (2.16)
The use of (2.10f) and (2.12b) with a summation over all elements yields (2.13d). In a

similar manner, a combination of (2.13a), (2.7b,¢), and (2.10c) yields (2.13e). (O

LEMMA 2.6. Under the conditions of Lemma 2.5, there exists a function €, such that

leli? = llu - Tullf + g (2.172)

with
gyl € Cu)hPL (2.17b)
Proof. Adding and subtracting [Tu to e yields (2.17a) with
g, =2 — Mu,lu — U)y + Mu - U} (2.18)

Applying the Schwarz inequality and using (2.5) and (2.12b) yields (2.17b). OJ

3. A posteriori error estimation of odd-degree approximations. If u is smooth on
A then error estimates E(x,t) of odd-degree approximations may be constructed in terms
of jumps in derivatives of U at the vertices of A. Informally, use (2.7d) to and its approx-

imation (2.9) to compute jumps in the derivatives of e(x,t) at the vertices pp = (P .P 2k ),




k=1.2,3,4. of A as

[0 e(pe)]; = ~[3, Ulpy.1)]; = b0 Wp 1P 1)]j + 0200, W, 41 (p 2],

j=12 k=12734, xeA, 3.1)
where [g(p)]; denotes the jump in g at point p in the x; direction. Since jumps in the
solution U and V41 are known, this overdetermined system may be solved in some sense
for the coefficients b j»J =1,2. The procedure used in the following lemma and theorem
- is to solve (3.1) for bj, J =1, 2, at each element vertex P k=1,2,3,4, and average

the values of lE(.t)ll; o based on the pairs of bj, J =1, 2, obtained.

LEMMA 3.1. Letu e HOl A HP*2, Tu be as defined in Lemma 2.4, and p be a posi-

tive odd integer, then

h2 N 2 4 5
u — Ml = ———— [0, T (py )17 + ¢, (3.2a)
where
lg,| < ChoP L, (3.2b)

Proof. cf. Yu [19]. O

THEOREM 3.1. Let u e HOI mHP‘: and U € 58"" be solutions of (2.2) and (2.3),

respectively. If p is an odd positive integer, then

le C.ONF = IECHNE + ¢ (3.3a)
where
NEC.OIE = —hz—ﬁvj i f; 0, Up )12 el < ch%+l (3.3b,c)
’ L= 16(2p + 1) i=lj=1k=l Y pk, 7 - ) o

Proof. Adding and subtracting ITu on each element yields

hZ N 4 [a U( )]2 h2 N 2 4 3 5
— , )= — . Tlu(p,,0)]7 +¢
16(2p + 1)i=11§l ,EI % Piot )l 16(2p + 1)5; = El[ X; (P« )]J 3

(3.4a)
where
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h= N o2 4 .
T — . _ H (D 2,
== Tezp + 1) =u§1 k% (8, (U (pet) = TTu(pe )]
20, (U (pyt) ~ Tu (py )], 8, Tl (py .01, 1 (3.4b)

Using (3.2a) and (2.17a) in (3.4a) we obtain

h?. N 2 4
9. Um..D12=llell? -€ —&, + ¢ 3.4¢)
16(717 + 1 g ékgl[ X (pk )]J “ “l 1 2 3 (
thus, establishing (3.3a,b) with € = &, + &, — €5. Since g; and €, are O (h 2f’“), it remains
to find a similar bound for €;. To this end, an application of the Schwarz inequality to

(3.4b) yields

o B2 N 2 4 5 I
€3 162p + 1) E El E][ (U(pg.t) = Mulpg )]
7{ h_ % Z i [ax(U(pk’t) ~ Iu (plw[))]'z}bx
162p + 1) ;556 7 g
_L AR J. 11 ¢ ]2}4'.’ (3.5)
{16(2p+1 EJEE'I[XJ u (P01 .

Let be the canonical element —1 € &,,&, < 1 and use norm equivalence on the
G1:62 q

finite-dimensional space Q,,(AO) to show that

max (I9gv! + 10:v)) < ClVvllgn, forall ve Q,(Ay. (3.6a)
& éz)EAo( d HOAO P 8 '

A subsequent linear mapping of Ay to an element A;, i =1, 2, ==, N, yields

max (13wl + ) s -Z—uwnm,,, for all w € 0, (4;). (3.6b)
Let A;,, n =1,2,3, 4, denote the four elements having common edges with A; = 4,
and
* 4 :
A =\ U4, 3.7

n=0
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Then. using (3.6b),

[a_r/(U(pk £) = Tu(pe D]y < C max {|axl(U - M)l + lax:(U - )l <

(xixed

S0 - Ml j=L2 k=1,234

With (3.8), we have

h2 N 2 4 ,
— 3. (U(p,.t) - Mu(p, tH]? <
16(2p +1>i§x,§k§[ 5 (U (Pe.t) = Tl ()]

~—£——§MLJMW-<QW—HMZ

16(2p + D5 La = 1

Similarly, using (2.5) and (3.2), we have ‘

h?. 2 4 5 5
—_— [0, TTu (py,2)17 < Cllu - Tu||Z
62 + 1) & & 5 0T et ‘

Using (3.9) in (3.5) yields

lesl < C{IU - w1 + Il = Tu|l |U - TTul},).

(3.8)

(3.9a)

(3.9b)

(3.10)

The estimates (2.5) and (2.12b) imply that &5 = O (k% *), which completes the proof. (]

4. A posteriori error estimation of even-degree approximations. Error estimates

in terms of jumps in solution derivatives fail for even-order approximations since

Vp41(x;), j =1, 2. is continuous on dA. Thus, with p even, we construct a Galerkin

problem for e by replacing u in (2.2) by U + e to obtain

(vo,e) +A(v,e)=g(tyv), t>0,

Av,e)=Awu’-U), t=0, forallveH(},
with

guv)=W.f)=-wd,U)-Aw,U).

(4.1a)

(4.1b)

(4.1c)

The error is once again approximated by E according to (2.9) and the test function v is
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selected as
vj(x) = (xj - ,'r"j'i)ﬁ(.rl)S(x:)‘ j=12, (4.22)
where
(@)
o(z) = &tl—_— o(z) = \1fp+1(z), 2 € [T-h/2,7+h/2]. (4.2b,c)
z -2

(Although not yet needed, we define ¢ for future reference.) Since \ypﬂ(xj-) and v (x),

j =1, 2, vanish on d4,, the error estimate satisfies the local Dirichlet problems

(Vj,a[E)A + AA(VJ’E) = gA(t’vj)’ t>0 (433)

Apvj E)=Apvju®=0U), 1=0, j=12 (4.3b)
where A subscripts denote that inner products are restricted to A;. The time derivative of

E in (4.3a) may be neglected to obtain the local elliptic problem

AA(vj,E) =galtw)), t> 0, j=12 4.4)

The parabolic (4.3) and elliptic (4.4) error estimates are shown to be asymptotically
correct in §4.1 and §4.2, respectively; however, prior to this, we establish some properties

of Y,,, 8 0,and v, j =1,2.

LEMMA 4.1. Let p 2 2 be an even integer, then there exist C > 0 such that

[[8(x;)dx dxy = ChP*2, [, 41(x;)28(x,) dx ydxy = CROP ™, (4.5a.b)
a A
[[ o(x;)%8(x ) dx dx, = ChP*2, io(x)liga = CRPPHD, (4.5¢,d)
A
ch2P=s1% < ly,  (x))lIZa € CR¥PM, 5 =0, 1, (4.5¢)
ch?* < v ()l a S CR¥PH, j ok =1,2. (4.5f)

Proof. A direct computation reveals the results. [

4.1. The parabolic error estimate. The parabolic finite element problem (4.3) may
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be further simplified by neglecting the higher-order off-diagonal diffusion coefficients and
the reaction term in the strain energy (2.2c), freezing the diagonal diffusion coefficients.
and using symmetry properties of Y,.(2) and v;(x), j =1, 2. to obtain the uncoupled

constant-coefficient initial value problem on element i

b’j(t)‘*"'jbj(f):Gj(t), t >0, ' (4.6a)

Azv; %) = UC0
b; (0) = f(vju() S (4.6b)
a; ;[ 6% 06)8(x (j mog 1) dx 1,
A

where
J.J‘ O'Z(Xj )S(X(J mod 2)+1) dx 1dx2
r=a;; A - , (4.6¢)
[T W51 Ge)8(x (j mod 2341) d x5
A
(t ,V')
G;(t) = - EaY , (4.6d)
[JW2ai(x)8(x j mod 241) dx 1dx 5
A
and
LTjk = ajk (i), j, k = 1, 2. (463)
Of course, the exact solution of (4.6) is
!
bi(t)=b;(0e ™ +[e VG (ndT, 20, j=1.2 4.7)
0

In order to estimate the difference between the exact solution of (4.1) and its approxi-

mation by (2.9, 4.7), we substitute (2.13) into (4.1) while using (2.10b) to obtain

Bi(t) + erj(t) =G;(t) - F;(t) - H;(t), t>0, (4.8a)

A %) - UCO)  Fi(0)

CT]JJ-J'CZ(XJ)S(.TU mod 2)+1)dx1dx2 . rj
A

B;(0) = , (4.8b)

where
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202 202
”[Z > ak‘,arkvjarle >3 (a,\.',-&'/\._l)axkvjaxld) + bvj-e]dxldxz
A k=ll=1 k=11l=l :
F~(t)=A : ., J =12,
j o)
H W51 (6)80x ( mog 1) dX 14X
A

(Vj ,a[e) .
Hi(t) = Ci=12 (4.8d)

_U W ()8 mog 21+1) @ 1%
A

We may formally solve (4.8a) for B; to obtain

B;(1) =B;@e ™" + [e1 UG (1) - Fyj(0 - Hy(Dldt, 120, j=12. (49
0

The following Lemma quantifies the differences between f3; and its approximation

LEMMA 42. Let p 22 be an even integer, ue HJ NHP*:, t20 and

a;  (X)> 09 >0 xeQ, k =1, 2, and assume that

o/ elly < Cu), n=0,1, 0t <1y, (4.10)
Then,
N C(u) )
2By - < Cu), Z(B,, -b} < — J =12 >0 (4llab)
=] =1
Proof. Letting
a;(t)=8;t) - bjt), j=12, (4.12)

and subtracting (4.7) from (4.9) and (4.6b) from (4.8b) we obtain

t .

o; (1) = ay(@e 7 = [eTTTF (0 + Hy(mldT, 120, (4.13a)
0 .
with
F.(0 .
o;(0) = - i ), j=1,02. (4.13b)

T
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Integrating (4.13a) by parts and applying the Schwarz and triangular inequalities yields

. .. IF )+ H,@)>  ,  |F.(0)+ H, (02
(1) < Cle™ " af(0) + ) 71( +e Tt J

2 2 *
rj' rj
to ’ ’ 2 t ’ ’ 2
AR (D) + H (o1 IF.(t) + H.'(7)]
e~2rimw 20 g i dt+ | i 0 3’() dt, t20. (4.14)
0 "j" to Ty

It remains to bound the various terms in (4.14). To begin, apply the Schwarz and triangu-
lar inequalities to (4.8c) while using the assumed smoothness of the coefficients a .

k,l =1, 2, and the dominance of the H'! norm relative to the L2 norm to obtain

2 2 241 2 2 2
vAIEALON A + R4 + |le + 116, 1l5 A]
RO 1 | P 1 Y N R

TR )8 moa 2y+1) dx dx ]
A

A summation over the element$ and use of (4.6¢) and (4.5) reveals that

le,-(t)+Hji(t)["
S

rji

N 5
> < CrCPIONE + AT + llellg + 119, O131,
i=1

J=12, 520, t20. (4.16)
The terms on the right may be bounded for ¢ > ¢, using (2.7b) and (2.13). Additionally,

since |lef]y is bounded on 0 < ¢ < to, (4.16) may be written as

Fu(0) + Hy(n)2 | C@h*? if0<1 <1
<

s T C@whD, ifrg<r

N
)

I=

j=1,2 520 (417

—

In a similar manner,

NOIF @)+ HY (P JC@h™, if0<r <ty
izl r s Cu), ifrg<t = JF L, 2. (4.18)
= J

The initial data @;(0), j =1, 2, may be bounded by applying the Schwarz inequality
to (4.13b) and using (4.5) to obtain
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0 (0)* € Ch=2P*DIBC.O)IFy + h20C. 07y + e COllGa), J =12 (419)

A summation over the elements and use of (2.13) vields

la; (O < Cph™P*0, j=1,2. (4.20)

M=

i=l

A summation of (4.14) and use of (4.17), (4.18), (4.20), and the dominance of the

exponential relative to any algebraic power of /1 yields (4.11a).

Following the reasoning used to obtain (4.14), we find

G2 L 1GOPR 016G @
b “(t) £ C[ -2rt b (0)+ Y +e-—2rjt J : +e 2r,(t—tq) J 3 dt
rj— ri ) 0o I
y IGII(T)iz
+ -—'3—‘d‘t], t 20. (4.21)
{p rj

Once again, we must bound the various terms in (4.21). Thus, applying the Schwarz ine-
quality to (4.3a) while using (4.6d) and (4.5), we obtain
2

NG N villya,
s *—C; . - U3 e s + lleliZs)
g U Wy 1,i(X)8(X j mod +1) X 14X 3

Av'

—

i=l- "ji =

< ChREP(P,elld + llell?r j=1,2, s20,2, r20. (4.22)

The estimates (2.7b,c) and assumed bounds on e yield

N (t)l2 CuhsP=3 ifo<t <1
. _ S
l§1 ], C(u )h2(5—3)’ if g <t , j=12, s20. (4.23)

Similarly,

IG./(0)12 | Cur™, if0<t <1

N
2% cw, ifro<r = 4=0L2 (4.24)
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Likewise. using (4.6b) and (4.3), we obtain

N N .( fvill A, )

Yb;0°<CY | -
JJ 00 28(x (j mod 2141) dx 1
&

1%C.0) = UCOIZy, < Cludh=2rh,

i=] i=|

\

j=12 (4.25)

A summation of (4.22) over the elements and subsequent use of (4.23-25) yields

N
)y bj;'l(t) SCwh™2, t>1, (4.26)

1=

Differentiating (2.10b), and using (2.10d), (4.2¢), and (4.5d) we readily obtain

19, 6C.0)1,
B3) /A —C—nun? v J=1,2 120 (4.27)
] o) ) pﬂ-l.A
llo(x;)llg.a h-

Combining (4.26) and (4.27)

2 Cu)
) + B <

., >t (4.28)
1 h*

N
(=

Applying the Schwarz inequality

¥ a2 2N < (T 27k [ (R 2 201k "
§ [Bji(t) = bjf(1)] < C[g Bji (1) = b (1)) [gi Bji(r) + bj(en] (4.29)
4

while using (4.11a) and (4.28) leads to (4.11b). OJ

We are now in position to state and prove the main result of this section.

THEOREM 4.1. Let u € Hol mH’”‘z and U e SS"” be solutions of (2.2) and (2.3),

respectively. If p 22 is an even integer and there is a constant C >0 such that

lolell; < C(u), n =0, 1, then there exist constants C > 0 and tg > 0 such that

leCOIE=MECONE +& t >t (4.30a)
where

N 2 :
IECHOIF = X 3 b2l )Gy, el < ChZPH (4.30b,c)
, i=l j=1
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Proof. Consider the identity

lle .OIIF = zﬁ(ta el + 13, el )dtldrqﬁ-[leﬂo @31)
=14,

and use (2.10b) and (2.15) to obtain

5

el =SS0

> [B20%(x;) + 19,612 + 20, 00, B]dx dx; + lle 5. (4.32)
i=1 4 j=

Adding and subtracting b o* (r ), j =1, 2, to the above integrand yields (4.30a.b) with

& Yji

N 2
=3 3 [[B} - bDo(x;) + 19, 81 + 20, 00, 8] dx dx, + lle lig- (4.33)
J=14; . -

1=

Applying the Schwarz and triangular inequalities and using the estimates (2.13c,d), (4.11b)

and (4.5d) yields (4.30c). U

4.2 The Elliptic error Estimate. As in §4.1, we further simplify the elliptic error
estimation problem by neglecting the off-diagonal diffusion coefficients and the reaction
term in the strain energy and by freezing the diagonal coefficients. With these approxima-

tions, b;(t), j = 1, 2, is determined from (4.4) as

tw;)
b, = 84l Y, L t>0, j=1,2. (4.34)

‘Tj.j ” Gz(xj )5("'(1' mod :)+1) dx 1dx2
BN

Substituting (2.15) into (4.1a) while using (2.10b) yields

a; ;B ()] 0% )38(x j moa 1) dx iy = g (t.v)) = Ej(2) (4.352)
B

where

2 2 2 2
=I [2 X a1 0,v0,0 + X X (ax ;=3 1)0,,vj0, ¢ + bvje + v;0,e]dx dx,,
A k=lIl=l k=l1=]
i=1,2 (4.35b)

Write (4.35a) in the form

B, = e j=12 (436)
] _ ) ] 9 Lo .
aj.j ” Gh(xj )S(X(j mod 2)+1)dx1dx2
A
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The analysis parallels that of §4.1 with a preliminary Lemma establishing differences
between Bj(t) and bj-(_z), j =1,2, and a subsequent Theorem containing the convergence

result.

[ . +2
LEMMA 4.3. Let p 22 be an even integer, ue Hi ~H"™, and a; ;(x) > a® > 0,

xe Q, k =1, 2. Then, there are constants C > 0 such that

N 2 N k) R C(ll) .
(Bﬂ - bjl) < C(u), Z (Bﬁ - bj;) < 3 , ] = l, 2, r > to.
i=1 i=1
(4.37a,b)
Proof. Subtracting (4.34) from (4.36) we obtain
Fj(f) .
O(j(t) = - " , t20. j=1,2, (4.38)
[[6%(¢)8(x j moa 2+1) dx 1

A
with a;(¢), j = 1, 2, given by (4.12). Applying the Schwarz and triangular inequalities to
(4.38) while using (4.35b), the assumed smoothness of the diffusion coefficients, and the

dominance of the H'! norm relative to the L> norm yields

[I8l124 + A2N0IE S + llelloa + 119, e lId 512
aj(t)Z S C”Vj”Iz'A 1,A - ‘1“3 0.A t 2...\ ’ j - 1, 2 (439)
[[] 0%(x,)8(x ; mod 23+1) d¥1dx3]
A

Summing over the elements and using (4 3»

N <
Y o () < CR2PHORONT + AP + lleli + 10 ellg), ¢ 20. (4.40)

i=1

Using (2.7b) and (2.13c,d), we establish (4.37a).
Applying the same reasoning that was used to obtain (4.22-26), we obtain
b)) S ChRTEPHDB, eIy + llellfal, j=1,2, £20. (4.41)
Summing over the elements while using (2.7b,c)

N
.Z%ﬂfﬁgﬁg,t>%,j=h2. (4.42)
=1




Combining (4.27) and (4.42)

N
Y b3 + BRI < C}fi_‘), t> 1 (4.43)
=]

Using (4.29) with (4.37a) and (4.43) establishes (4.37D). O

THEOREM 4.2. Let u e HO1 mH’”z and U e Sgl‘p be solutions of (2.2) and (2.3),

respectively. If p 22 is an even integer, then there exist constants C >0 and ty > 0 such
that
leC.OIE=IECOIF +& 1>t (4.44a)
where
AR 2 | 2p+1
IEC.OIE = 2 X biOllotx)llga, lel < Ch-P™. (4.44bc)
parion ‘

Proof. The proof is the same as that of Theorem 4.1. []

5. Examples. We present four examples to illustrate the performance of the error
estimation procedures of §3 and §4 in situations where the theory applies and does not
apply. Accuracy of the error estimate is measured by the global and local effectivity

indices

_ECHI ’IE"-f)lh.A,

= —, i=12,.,N, 5.1
T el Ol

respectively, which should converge to unity under mesh refinement. In all cases, even-
order results are-presented for the elliptic error estimation procedure. Results with the

parabolic error estimation procedure are virtually identical.

Example 1. The theory applies to the linear heat conduction equation

ou —Au = f(x,t), xe(O,1)x(O,1), t>0, (5.2a)

with f (x,t) and the initial and the Dirichlet boundary conditions specified so that the exact

solution is
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u(x.r) = cos(t)e'lo[(“'b"’: - y=2], (5.2b)

We solved this problem on 0 < ¢ < 0.5 using uniform meshes having N = 100, 400.

900, and 1600 square elements and uniform orders p =1,2,3,4 Temporal integration
was performed using the backward difference software system DASSL [13] with error
tolerances of 107° for p =1,2 and 1070 for p =3, 4, which should minimize temporal
discretization errors and enable us to concentrate on spatial errors. Finite element errors

and effectivity indices at + = 0.5 appear in Table 1. Numbers in parenthesis indicate a

power of ten.

Effectivity indices are in excess of 95% of ideal for all combinations of p and N.
Convergence in h of the effectivity index to unity is apparent. Based on the limited data

available in Table 1, converence in p seems plausible for even orders but not so for odd

orders.

Example 2. Convection is not supported by the theory, but the error estimates should
work as long as convection does not dominate diffusion. Thus, consider a linear

convection-diffusion equation

ou —Au +Vu =f(xt), xe(0,1)x(.1), >0, (5.3a)

with the data specified so that the exact solution is

u(x.t) = {1 - tanh(10x | + 2x, — 10¢ — 2)]. (5.3b)

We solved (5.3) using the parameters of Example 1. Finite element errors and
effectivity indices at ¢ = 0.5 appear in Table 2. As conjectured, the effectivity index
appears to be approaching unity as N increases. Effectivity indices are above 80% of
ideal for almost all computations. Performance of the even-order error estimates is better

than that of the odd-order estimates. Again, the even-order indices suggest possible con-

vergence in p.

Example 3. Although the present theory does not apply to nonlinear problems, we




TABLE 1
Errors and effectiviry indices for Example | on N -element uniform
meshes with piecewise bi-p polynomial approximations.

1
flell/dlull, |1

2 | 3 4
leibdldy, | n | dlell/lally n lle thtle Iy |

D
N

0.137(-1) | 0.9961 0.987(-3) | 0.948 | 0.587(—4) | 0.9991

i
100 ‘ 0.151( 0) 0.988
!

400 0.757(-D 0.998 0.345(=2) 0.99%0 0.124(-3) 0.983 0.369(-5) 0.9998
900 0.505(~1) 0.999 0.154(-2) 0.9996 0.369(—4) 0.992 0.731(-6) 0.9999
1600 0.379(-1) ! 0.999 0.864(=3) | 0.9998 0.156(—4) 0.995 0.231(-6) 0.9999
TABLE 2
Errors and effectivity indices for Example 2 on N -element uniform
meshes with piecewise bi-p polynomial approximations.
P 1 2 | 3 4
N leflyllel, | M lefitlelly, 1 ) dfledb/lluly |1 lle fly/Mully n

100 0.239( O 0.739 0.504(-1) 0.885 0.958(-2) 0.426 | 0.177(=2) 0.920
400 0.118( 0) 0.928 0.127(-1) 0.970 0.125(-2) 0.754 | 0.118(=3) 0.979
900 0.785(-1) 0.968 0.569(=2) 0.987 0.377(-3) | 0.880 | 0.238(-4) 0.991
1600 | 0.589(=1) 0.981 0.320(-2) 0.992 0.160(-3) 0930 | 0.331(=%) 0.995

TABLE 3
Errors and effectivity indices for Example 3 on N -element uniform
meshes with piecewise bi-p polynomial approximations.

p | 2 3 4
N e fly/Heefly n lle 1l /Heelly n Hle 11y /{lee i n e lly/Wea 1l N

100 0.262(-1) 0.949 0.872(=3) 0.995 0.278(-4) | 0.920 | 0.848(-6) | 0.999
400 0.129(-1) 0.977 0.218(=3) 0.999 0.348(=5) | 0.966 | 0.530(-7) 1.000
900 0.858(=2) 0.985 0.963(—4) 0.999 0.103(-5) | 0.979 | 0.105(-7) 1.000
1600 | 0.643(=2) 0.989 0.544(—4) 1.000 0.436(-6) | 0.979 | 0.331(-8) 1.000

expect good results when the nonlinearity is not strong and when the solution is smooth.

Thus, consider the reaction-diffusion equation
o,u — bAu = qu¥(1 —u), xe(0,1)x(0,1), t>0, (5.4a)
with ¢ = 0 and the data specified so that the exact solution is

1
Vg72(x, + x, = tNqi2)

u(x,t)= (5.4b)

l+e
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We selected ¢ = 20 and solved (5.4) on 0 <t < 0.5 using the parameters of Example
I. Temporal tolerances were selected as 1079 for p = 1,2, 3, 10712 for p = 4 and the

three coarser meshes, and 107" for p = 4 and the finest mesh.

Finite element errors and effectivity indices at + = 0.5 are presented in Table 3. The
performance of the error estimation procedures is excellent, with effectivity indices in
excess of 90% of ideal for all choices of N and p. As with the previous examples. con-

vergence in h is apparent

Example 4. as a final example, consider a linear heat conduction equation of the

form (5.2a) with the data specified so that the exact solution (expressed in polar coordi-

nates) is

u(xX,t) = u(r,0,t) = r®sino(t)d, () = (2/3) + (1/4)sinz. (5.5
This solution behaves as O (r®*)) near the origin and this singular behavior will limit the
rate of convergence in h. Unless the singularity is resolved by, e.g., grading the mesh, it
will “‘pollute’” the solution and error estimate globally. Our local error estiamtes fail to
recognize such pollution errors and may be expected to give poor performance in their
presence. Were the singularity resolved to the point where the pollution errors are small

relative to the local errors, we would expect reasonable accuracy.

Let us begin by solving (5.2a, 5) on 0 < ¢ < 0.3 using the uniform meshes and poly-
nomial degrees specified with Example 1. Temporal tolerances are 107, 107, 1077, and
10710 for p =1,2,3, 4, respectively. Errors and effectivity indices at + = 0.3 are shown
in Table 4 for all combinations of N and p. Similar data at ¢t = 0.0, 0.1, 0.2, and 0.3 for
a 400-element uniform mesh with p = 1, 2, 3, 4 are shown in Table 5. Errors in the local
H'! norm and the difference between the local effectivity indices and unity at ¢ = 0.3 for a

100-element mesh with p = 4 are shown in Figure 1.

Results in Tables 4 and 5 indicate that error estimates have little to do with exact

errors. An examination of the upper portion of Figure 1 reveals that large errors near the
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TABLE ¢
Errors and effectivity indices for Example 4 on N -element uniform
meshes with piecewise bi-p polynomial approximations.

p 1 | 2 | 3 | 4 ‘
N lle /el n lellMafly I 1 lelpAlady | m 1 dlelyllully, | 7

100 0.376(-1) | 0.563 0.151(-1) | 0319 | 0.938(-2) | 0.075 | 0.681(-2) | 0.078
400 0.229(-1) | 0.581 0.112(-1) | 0319 | 0.561(=2) | 0.075 | 0.407(-2) | 0.078
500 0.171(=1) | 0.589 | 0.906(-2) | 0.319 | 0.416(=2) | 0.075 | 0.302(-2) | 0.078
1600 | 0.138(-1) | 0.593 0.768(=2) | 0.319 | 0.336(=2) | 0.075 | 0.244(=2) | 0.078

TABLE 5
Errors and effectivity indices for Example 4 at t = 0.0, 0.1, 0.2, 0.3
on a 400-element uniform mesh with p =1, 2, 3, 4.

p | 2 3 4
N lle Wy thae il N le 11/ Mo 1y n Hle lly/Mu 1l | lle M1/l ity n

0.0 | 0372(~1) | 0519 0.204(-1) | 0.268 0.111(-1) | 0.054 | 0.841(~2) 0.064
0.1 0317(~1) | 0.541 0.168(-1) | 0.288 0.889(-2) | 0.069 | 0.663(=2) | 0.071
0.2 0.270(-1) | 0.561 0.137¢-1) 0.303 0.708(-2) | 0.072 | 0.520(-2) 0.074
0.3 0.229(-1) 0.581 0.112(=1) 0.319 | 0.561(=2) | 0.075 | 0.407(-2) | 0.078

singularity pollute the entire domain and result in large deviations from unity of local

effectivity indices everywhere [7]. As anticipated, the solution is converging as O (h wit)y,

In order to improve the performance of the error estimations, we solve (5.2a, 5) on
graded meshes obtained by refining the element of a uniform mesh that is closest to the
origin. We do this by dividing the two element edges along the coordinate axis into the n
segments

g, =h(m) j=01,n, §>0 (5.6)
introducing a diagonal from from (§;,§;) to (k,h); and connecting line segments at the
points (5.6) alonrg the axes to similarly spaced points on the diagonal. This mesh, referred
to as N:n, has N square and 2(n — 1) trapezoidal elements. The mesh shown in fhe

lower portion of Figure 1 is one uniform refinement of the 25:5 mesh. Error estimates can

be constructed for these quadrilateral elements by introducing minor modifications to the




formulas developed here [1].

We solve (5.2a. 5) on 0 < ¢ £ 0.3 using the meshes 25:5, 100:10, 225:15, and 400:20
with p ranging from | to 4. The grading parameter { was selected as 3/2 for p = | and
9p /4 otherwise. Temporal tolerances are the same as the uniform-mesh case. Errors and
effectivity indices at ¢+ = 0.3 are presented for all mesh and order corﬁbinations in Table 6.
Similar data at 7 = 0.0, 0.1, 0.2, and 0.3 on the 132-clement mesh appear in Table 7.
Local errors and the difference between local effectivity indices and unity are shown in

the lower portion of Figure 1.

The severe mesh grading has reduced errors on the elément adjacent to the singular-
ity. This has substantially reduced global pollution errors and improved the performance
of the error estimation procedures. Global effectivity indices are within 12% of unity.

TABLE 6

Errors and effectivity indices for Example 4 on N -element graded
meshes with piecewise bi-p polynomial approximations.

1 2 3 4
lle dfy/lee iy n lle lluAlu il n lle /el n lle fly/Mlue i)y n

P4

132 0.181(=1) | 0.999 0.118(-2) | 0.941 0.369(-3) 3.431 0.234(-3) 0.879
472 0.112(-1) 1.004 | 0.468(-3) 1.016 0.453(—4) 1.279 | 0.682(-3) 1.039
1012 0.862(-2) 0.991 0.336(-3) 1.017 0.300(—4) 1.066 | 0.230(-3) 1.121
1752 0.704(-2) 0.993 0.271(-3) 1.017 0.241(-hH 0.989 | 0.177(-3) 1.080

TABLE 7
Errors and effectivity indices for Example 4 on a 472-element graded
mesh withp =1, 2, 3, 4.

1 2 3 4
lle dly/llue 1ty n lle fli/lu n lle /1l il n lle 3/t fly n

>

0.0 0.156(-1) 1.024 | 0.713(-3) 1.017 0.760(—4) 1.304 | 0.121(—4) 1.024
0.1 0.139(=1) 1.025 0.624(=3) 1.017 0.642(—4) 1.297 | 0.100(—4) 1.035
02 0.125(-1) 1.019 | 0.541(-3) 1.016 | 0.540(—4) 1.288 | 0.827(-5) 1.029
0.3 0.112(-1) 1.004 | 0.468(-3) 1.016 0.453(—4) 1.279 | 0.682(-5) 1.039
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Fic. 1. Local errors (upper-left) and the difference berwveen the local effectiviry indices
and unity (upper-right) for Example 4 at t = 0.3 on a uniform 100-element mesh using
piecewise bi-quartic polvnomial approximations. Similar data for computations performed
on a graded 3:5 mesh that has been uniformly refined are shown at the bottom.




6. Discussion. We have developed simple a posteriori procedures for estimating spa-
tial discretization errors of piecewise bi-p polynomial finite element solutions of linear
parabolic partial differential equations. The theory developed for square-element meshes
easily extends to rectangles. As earlier work [10. 18, 19] would suggest, the error estima-
tion procedures divide into distinct classes for odd- and even-order approximations. Error
estimates for each are asymptotically exact and involve only element level computations

with, at most, nearest-neighbor communications.

The error estimates for even values of p perform better than that for odd p. Results
indicate that asymptotic correctness under p -refinement is possible for even p. This is not
the case for odd p where results deteriorate with increasing polynomial degree. Computa-
tional evidence further suggests that the error estimates are asymptotically correct under
more general conditions than indicated by the present theory. Indeed, results of Example
4 indicate that the error estimates are asymptotically correct on graded quadrilateral-
element meshes in the presence of singularities. Adjerid et al. [1] show that the error esti-
mation procedures apply to finite element spaces other than piecewise bi-p polynomials.
In particular, they apply to a class of piecewise hierarchical functions that have been

modified by adding ‘‘bubble functions’’ to a standard hierarchical basis [14].

Extending the present theory to three-dimensional linear problems on hexahedral
element-meshes would be straight forward. It would be more interesting and difficult to
establish correctness of the error estimates on arbitrarily graded triangular- and
tetrahedral-element meshes. Nonlinearity, strong reactions, convective influences, and

singularities would be other important considerations.
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Mechanics of hot isostatic pressing
in intermetallic matrix composites
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Thermal residual and mechanical stresses generated by hot isostatic pressing, cooling and
subsequent mechanical loading of SCS6/Ni; Al and SCS6/Ti,Al composites with uncoated and
carbon-coated fibres have been simulated by micromechanical modelling. The solutions were
found in a periodic hexagonal array model of the microstructure with the finite element method.
The intermetallic matrices were assumed to be elastic-plastic, with temperature-dependent
properties. The fibre and coating were assumed to be elastic. Local stress fields and overall
response were found for several processing sequences. The results suggest that plastic
deformation of the matrix during cooling from fabrication temperatures reduces residual stresses.
The Ni;Al matrix system yields more easily than the Ti;Al system. HIP programmes that promote
such yielding are proposed and analysed in both systems. Compliant and expansive fibre coatings
tend to reduce the thermal stresses, but may also enhance the interface stresses in the matrix under

overall mechanical loads.

1. Introduction

One of the factors affecting the overall response and
damage and failure resistance of composite materials
is the residual stress field caused by pressure and
temperature histories applied in fabrication. process-
ing and subsequent cooling. The distribution and
magnitude of such stresses is affected by the thermo-
mechanical compatibility of the phases. and by the
inelastic deformation that may take place under cer-
"tain loading conditions in some systems. Understand-
ing of the various factors involved is possible only
with reasonably detailed modelling of the fabncation.
processing and loading sequences.

The present work examines local stresses n
SCS6.NijAl and SCS6/Ti;Al intermetallic matnx
composites reinforced by coated and uncoated fibres,
under thermal changes, mechanical loads. and ther-
momechanical loading conditions which simulate fab-
rication by hot isostatic pressing (HIP). The effect of
fibre coating, matrix plasticity, and standard and
modified HIP parameters is considered. The results
focus primarily on understanding the mechanics of the
HIP process and the role of the various parameters
involved.

Section 2 describes the micromechanical model
used in this study and the constitutive equations of the
phases; Section 3 presents the material properties of
the phases. The local stress concentrations found in
unidirectional composites reinforced by coated and

uncoated fibres under mechanical or thermal loads are
presented in Section 4. The main results of interest
appear in Section 5, where we evaluate the stresses
created in the two systems during standard and modi-
fied hot isostatic pressing proce-dures. and in sub-
sequent mechanical loading or reheating to processing
temperatures. Significantly different outcomes are
found for different HIP parameters. Interpretation of
the results by several models shows that higher pres-
sures and axisymmetric rather than isotropic overall
stress states promote plastic straining of the matrix
and thus help to reduce the magnitudes of the residual
fields.

2. Evaluation of local fields in fibrous
media

2.1. Micromechanical models

The overall response and local fields in fibrous com-
posites can be predicted by several material models
which offer various approximations of the micro-
geometry, phase constitutive behaviour. and loading
conditions. In elastic composites. the local moduli do
not change during deformation, hence acceptable esti-
mates can be found using approaches that rely on
averages of local fields in the phases. such as the
self-consistent [1] or Mori~-Tanaka [2—4] models.
Analogous techniques are available for inelastic com-
posites. However, because the instantancous moduli

* Present uddress ABS Americas. The American Bureau of Shipping. 263 North Belt East. Houston. TX 77060. USA.
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of the inelastic phases depend on the local deforma-
tion history, the overall response may not be wel]
represented by averages of the local fields, Indeed,
a recent comparison [5] of several micromechanical
models with experiments indicated substantial devi-
ations of certain predictions from observed behaviour.
This was true in particular for the self-consistent and
Mori-Tanaka models. Our bimodal plasticity theory
[6] provided good predictions of the observed yield
surfaces. but not of overall plastic strains. This is
readily understood if the overall surface is regarded as
a locus of vertices of yield cones formed by clusters of
vield surfaces of matrix subelements in the overall
stress space. so that the plastic strain increment vec-
tors are contained within cones of normals at each
loading point [7]. Most reliable predictions are of-
fered by models that can approximate the actual local
stress and strain fields. Those are typically discretized
unit cell models, such as the periodic hexagonal array
model 8, 9], or its rectangular array analogous
{10, 11]. Under remotely applied uniform stress or
strain. one can identify a representative unit cell, de-
rive periodic boundary conditions for he cell, dis-
cretize the volume and evaluate the . .al fields in
terms of piecewise uniform estimates oy the finite
element method or by the transformation field analy-
sis [12]. A survey of the above models can be found in
the reviews by Bahei-El-Din and Dvorak {13] and
Dvorak [14].

The present work employs the periodic hexagonal
array (PHA) model developed by Dvorak and Teply
[8. 9]. In a series of recent publications, advanced
constitutive equations for elastic-plastic and visco-
plastic phases have been implemented in this model
[15. 6] and predictions were verified by comparisons
with experimental resuits [5, 16-19]. The microstruc-
tural geometry in the transverse plane of a unidirec-
tionally reinforced fibrous composite is re~-esented by
a periodic distribution of the fibres i- "exagonal
array. The fibre cross-sections are ar aated by

(n x 6)-sided potygons. Examples of the PHA micro-
geometry with hexagonal and dodecagonal fibre
cross-sections are shown in Fig. 1. The hexagonal
array is divided into two kinds of unit cell. as indicated
by the shaded and unshaded triangles. Under overal]
uniform stresses or strains, the internal fields of the
two sets of unit cells are related by a simple trans-
formation. Accordingly, for uniform overall stresses or
strains applied to the aggregate, only one unit cell
selected from either set needs to be analysed under
certain displacement boundary conditions which re-
flect periodicity of the local fields [9]. A three-dimen-
sional view of the unit cell showing dimensions and
support conditions is given in Fig. 2 for a fibre with
hexagonal cross-section.

The actual analysis was performed by the finite
element method. The unit cell was subdivided into
a selected number of subelements in the matrix, fibre,
and coating subdomains. The degree of mesh refine-
ment may vary from a few elements in each sub-
domain to several hundred elements. In general.
evaluation of the internal fields in the phases and at
their interfaces requires a large number of elements
[20], whereas the overall response can be adequately
predicted with few elements [15. 20]. Examples of
various degrees of mesh refinements are shown in
Fig. 3. In the present study we implemented the PHA
microgeometry in the ABAQUS finite element pro-
gram [21] for the mesh shown in Fig. 3b.

2.2. Phase constitutive equations

The fibre and coating, if any, are assumed to be elastic
and transversely isotropic. The matrix is assumed to
be isotropic in the elastic deformation range confined
within a current yield surface. The thermoelastic
properties of the phases are, in general. functions of
temperature.  Using contracted notation. et

de, =[do,do; dosdo,dosdog]T, de, = [de, dr
deyde,desdeg]™, denote the stress and str

(b}

Figure | Transverse cross sections of the PHA microgeometry wtih {a) hexagonal and (b) dodecagonal cylindrical fibres.

2




_§. 3 cf1l2
B JEEE—

g

Figure 2 Geometry, dimensions and support conditions of the unit cell.
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Figure 3 Examples of finite element meshes in the PHA unit cell.
increments in the fibre r =f, matrix r = m, or the  written in the incremental form [22,23]
goatxn’g r=c, in a Cartesian coordinate system x;, de, = M(T)de, + m¢(T. 6,)dT 0
j=1.2.3. In the presence of a temperature change, -
dT. the stress-strain relation for the elastic phases are de, = Li(T)de, + {F(T. &.)dT 2




where

mi(T. ¢,) = (CM;2T)e, + m:(T) (3)
- T
F(Te)= (aLf.:’EBT)[ar —j mr(T)dT:] - L{T)m(T)
To

= — LY T)m(T) (4)

where L{(T) is the phase elastic stiffness matrix.
M:(T) = [L(T)] ™" is the elastic compliance matrix,
m (T)= [2,2r2;000]7 is the thermal strain vector
of linear thermal expansion coefficients for the axial
and transverse directions, and Ty is the initial temper-
ature. The dependence of the thermal strain on the
current stress in Equation 3 satisfies the path indepen-
dence requirement of the elastic solution. When integ-
rated along the thermal loading path, Equations 1-4
provide uncoupled mechanical and thermal fields.

For a transversely isotropic phase with the axis of
rotational symmetry x,, the non-zero coefficients of
the upper half of the symmetric stiffness matrix, L¢, at
a given temperature are evaluated as

Li=n Ly=Ly=k+m L,=L,=I
Lys=k—m Ly=m Lys=Leg=p (5)

The Hill's moduli [24] k. [, n, m. and p of the phase are
related to the engineering moduli by the relations

k= —1[4Er)~(1'Gy) — (4vi/Er)]  [=2kv,
n=E +1*%k m=Gy, p=G (6)

where the Young's modulus, E;, shear modulus, G,
the Poisson’s ratio. v, refer to straining in the longitu-
dinal direction. and Ey, Gy, vr = (E1/2Gy — 1) to the
transverse plane.

The region of the elastic response of the matrix to
thermomechanical loads is determined by certain con-
ditions related to the existence of a yield surface
" f(Gm. T) = 0. Assuming kinematic and isotropic hard-
ening, the Mises vield surface is given by

f(cmy T) = i’(sm - am):(sm e )

—-(X(H+0)*=0 N

where s, is the matrix deviatoric stress. a., is the
centre of the yield surface, Y is the matrix vield stress
in simple tension, and Q is isotropic stress function. In
Equation 7, we used the notation (a: ) to denote the
inner product of second order tensors a;; and b,;.

In particular. elastic response of the matrix obtains
if f<O0, or if f=0 and [(@f/C6n):do, + (2f3T)
dT7] <0 [25]. In this case. Equations 1-6 apply and
the Hill's moduli in Equation 6 are given in terms of
the bulk modulus, K, and shear modulus, G, of the
isotropic matrix as k= G/l —2v). | =K — 2G/3,
n=K+ 463 m=p=0G.

Elastic-plastic deformation takes place in the
matrix if f = 0 and [(CfC6y):day, + (fi2T)dT] > 0.
The assumption is that the total strain increment can
be additively decomposed into elastic and plastic com-
ponents. The instantaneous response is then evaluated
from Equations | and 2. providing that the elastic
compliance matrix M. the stiffness matrix L. the
thermal strain vector. . and the thermal stress vec-
tor. I¥. are replaced by their instantaneous counter-
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parts. The latter are written as [22. 26]
M, =M, + (3.2H){n:n") (8)
L,=L, —[2Ga(1 + H3G,)](n:n") (9)
My =mey — ([3'2Y(D)) (22 H)a (10)
L. =[2G, (1 + H'3G)](n" 5t
+[V(T)6' 2Gul)n - I¢ (11)

H=[d& — Y'(T)dT] di? (12a)
3 1.2
dé = <5d51d5> (12b)
b] 12
dgr = <§ ds":ds”) {12¢)
n=[1;(23)"? YI[511 522533 2523 255, 25,17
§=06,— 4, (13)

where Y'(T) =dY,dT, ° is the plastic strain vector,
and H is plastic tangent modulus of the stress-plastic
strain curve. In Equation 9, n:n" denotes the tensor
product n;;n,,.

Evolution of the position of the centre of the matrix
yield surface @y, the isotropic function Q, and the
plastic tangent modulus H may take several different
forms which are usually guided by experimental ob-
servations. In the present work we used the constitut-
ive equations available in the ABAQUS finite element
program. Specifically, we assumed linear hardening in
which H is constant under isothermal loading. and
specified translation of the yield surface by the
Prager-Ziegler hardening rule. Except for variations
of the yield stress ¥ caused by the temperature change.
we neglected isotropic hardening of the vield surface.
Other constitutive rules, such as the two-surface plas-
ticity theory [27], could be applied as well; these
would provide somewhat different magnitudes of the
local fields.

3. The intermetallic matrix composite
systems

Two intermetallic matrix composite materials rein-
forced by aligned continuous fibres are considered in
the present study. One system has nickel aluminide
{Ni;Al) matrix, the other a titanium aluminide (Ti;AD
matrix. Both systems are reinforced by silicon carbide
fibre (SCS6) at 25% volume concentration. A 10 um
thick carbon coating has been added to the fibres in
some cases. The thermoelastic properties of the silicon
carbide fibre and the carbon coating are taken as
independent of temperature. and their specific magni-
tudes are given in Table I [28]. The thermoelastic
properties of the two aluminide matrices vary with
temperature as shown in Tables II and III [29. 30].
Variation of the Young's moduli and of the thermal
expansion coefficients of the phases with temperature
is shown in Figs 4 and 5. respectively. together with
the Mori-Tanaka estimates of the overall moduli and
expansion coefficients derived from these estimates. [t
is seen that the thermal coefficient mismatch between
the phases in the nickel-based composite system is
larger than that in the titanium-based system.




TABLE I Matenal properties of SCS6 fibre and carbon coating [28]

E, E: G, Gy v 1, 1
(GPa) (GPa) (GPa) (GPa) {1078°C -ty (107°:C 1)
SCS6 fibre 4136 4136 159.1 159.1 0.3 46 46
Carbon coating 1724 6.9 14.5 38 0.3 18 28
TABLE II Matenal properties of Ni,Al matrix [29] N 25
o -
9 E v x Y H = r
“C {GPa) {107°C"!) (MPa) (GPa) c 20
[=]
‘a
1200 134 0.32 20.6 137 6.70 §,
994 142 032 190 79 .10 X >
776 150 0.32 17.2 459 7.50 L o sesennal
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The yield stress. Y. and the plastic tangent modulus,
H. of the Ni;Al [29] and the Ti;Al [30] matrices are
shown in Tables Il and III as function of temperature.
The vield stress changes are shown in Fig. 6. The
variation of the vield stress of the Ni;Al matrix with
temperature. which is not typical of intermetallic com-
pounds. will be seen to cause early vielding of the

0 i i “ L L A
g 200 400 600 800

Temperature. T (°C)

1000 1200

Figure 6 Tensile yield stresses of the matrix matenals.

nickel-based composite system during fabrication and
thus reduce the local stresses in the matrix.

In a typical fabrication process of intermetallic
matrix composites, particles of the matrix are sprayed
on aligned fibres to create a monolayer composite
{31, 32]. The required number of layers is then
assembled and encapsulated in a hermetically sealed
package consisting of stainless steel plates or tubes
depending on the shape of the final product. The
assembly is then consolidated by hot isostatic pressing
(HIP) at a specified high temperature and hydrostatic
pressure. After a predetermined time period, the HIP
package is cooled down to room temperature and the
pressure is simultaneously reduced to atmospheric
pressure. Owing to the thermal mismatch present be-
tween the fibre and matnix phases. cooldown from the
processing temperature cause internal stresses. Such
local stresses may lead to localized effects such as
yielding or damage. and thus alter the overall
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performance of the composite. The following sections
examine the local stress field in the two intermetailic
matrix composites described above. after certain
simple loading programs, and after several typical and
modified HIP cycles applied during fabrication and
processing. Modification of the HIP parameters and
thermo-mechanical loading unloading paths is ex-
plored to identify conditions that may lead to reduced
residual stress fields.

4. Stress concentrations in uncoated
and coated fibre systems
4.1. Elastic response
The local fields and the overall thermomechanical
response of elastic composites reinforced by coated or
uncoated fibres was evaluated by Benveniste er al. [4],
Dvorak er al. [23], and Bahei-El-Din and Dvorak
[33]. The latter. as well as our present study, also
consider the effect of matrix plastic flow on the local
stresses and on overall response. This section presents
new data for the stresses in the above intermetallic
composite systems subjected to thermal and mechan-
ical loading. In contrast to elastic composites with
constant moduli. the systems considered here have
temperature-dependent properties. Therefore, all re-
sults are presented in terms of ratios of increments of
local stresses to the increments of overall stress or
temperature, at specified temperature. These ratios
may be somewhat different at other temperatures. but
they illustrate the magnitudes of changes of local fields
under overall applied loads.

First, we examine the thermal and mechanical stres-
ses generated in elastic systems at high temperature,
and the overall elastic response over a range of tem-
peratures. An initially stress-free state was assumed.
and the magnitudes of thermoelastic phase moduli
were taken at 1200 and 950 C for the SCS6 Ni Al and
SCS6:-TisAl composites. respectively. Small changes in
temperature and transverse tensile stress were applied

in separate solutions for the unit cell shown in Fig. 3b.
and the local fields were found using the ABAQLUS
finite element program. Among the six components of
the local stress fields. of interest here are the contours
of the ratios of the local transverse normal stress
A0, AT in the unit cell. shown in Figs 7 and 8 for
systems with Ni Al and TiyAl matrices. respectively,
and with uncoated and coated SCS6 fibres. Also of
interest are the local to overall transverse normal
stress ratios at room temperature. plotted in Figs 9
and 10. The dashed triangular boundary shown in
Figs 7-10 indicates the unit cell used in the solution.
The contours outside the unit cell were found from
periodicity of the local stress field. The significant
stress ratios found in these plots are listed in the top
part of Table V. Note that the transverse normal
stress. ;. at the interface coincides with the radial
normal stress in the x,-direction. and with the hoop
stress perpendicular to the x;-direction. The magni-
tudes of these stresses play a significant role in initia-
tion of fibre matrix debonding and radial cracking in
the matrix at the fibre interface. respectively.

The results in Figs 7 and 8 indicate that a decrease
in temperature. and the consequent differential dilata-
tion of the phases. cause compressive radial stresses
and tensile hoop stresses in the matrix. and compres-
sive radial and hoop stresses in the fibre. Note that as
long as the phases remain elastic, the magnitudes of
the thermal stresses found in the titanium-based
system are much smaller than those found in the
nickel-based system. This is consistent with the smaller
difference between the coefficients of thermal expan-
sion of the fibre and matrix in the two systems. Fig. 5.
Thermomechanical compatibility can be enhanced by
applying a compliant coating to the fibre, such as the
CVD-deposited carbon coating with properties de-
scribed in Table I. This causes a significant reduction
in the local thermal stresses. particularly at the
fibre. matrix interface. Figs 7b and 8b. Compared to
the matrix and fibre phases. the carbon coating has

Figure = Transverse thermal stress concentrations. Ag,, ATMPa C~ ') in the SCS6 .\'IJ.-\I composite in the elastic range at 1200 C
uncoated fibre. (b} carbon-coated fibre.
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Figure ¥ Transverse thermal stress concentrations. Ag,, AT (MPa C™}), in the SCS6 Ti,Al composite in the elastic range at 950 C: (a)
uncoated fibre. 1b) carbon-coated fibre.
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Figure 9 Transverse mechanical stress concentrations. Aa,, A&,,.in the SCS6.Ni, Al composite in the elastic range at 1300 “C: 1a) uncoated
fibre. (b} carbon-coated fibre.
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Figure [1) Transverse mechanical stress concentrations. Ao, AG,,.in the SCS6 Ti,Al composite in the elastic range at 930 C: 1a) uncoated
fibre. (b} carbon-coated fibre.




TABLE IV Summary of stress concentrations i the matrix at fibre matrix interface

X3

SCS6.NijAl SCS6 TiyAl
Uncoated Coated Uncoated Coated
fibre fibre fibre fibre
Elastc
Ac, AT*MPa C™") 1.56 045 0.28 0.08
Adse ATH¥MPa C°H - 213 - 090 -0.36 —-0.18
Ao, AG., 1.15 0.61 1.25 091
A0y, AG;, 0.57 2.01 0.28 1.37
Elastic-Plastic
Ac,, AT*{MPa C™ ) 0.13 0.08 NY¢ NY:
Aoy AT*(MPa"C™Y -0.16 -0.13 NY* NY*
Ao, AG,,° 1.23 1.11 1.28 1.04
Aoy, A, 0.11 0.56 0.34 093

*T =1200°C 1n SCS6 Ni;AL 950 -C in SCS6 Ti,Al
ATlelastic) = — 30 -C. ATtelastic-plastic) = T — 21 -C.
°&;; = 215 MPa in SCS6 NijAl 605 MPa in SCS6-Ti, Al
‘No yielding.

a much smaller elastic moduli in the transverse plane,
Table I, hence it offers little resistance to lateral ther-
mal deformation of either phase. Also, the coating has
a large coefficient of thermal expansion in the trans-
verse plane. and is thus able to fill or vacate the
void between the fibre and matrix that expands or
contracts with positive or negative changes in
temperature.

Contours of the elastic stress concentration factors
found in uncoated SCS6,Ni;Al and SCS6.Ti;Al com-
posites under uniform transverse tension are shown in
Figs 9 and 10. respectively. for uncoated and coated
fibres. The stress concentrations found in both com-
posite systems under overall transverse tension are of
similar magnitude. In contrast to its effect under ther-
mal changes. the fibre coating, in general. tends to
elevate significantly the mechanical transverse stresses
Figs Yb and 10b. In particular. as shown in Table IV,
the matrix hoop:transverse overall stress ratio

Ay, A&, increased from 0.57 to 2.01. or by a factor
of 3.5 in the SCS6,Ni;Al composite and from 0.28 to
1.37. or by 4.9 in the SCS6, Ti;Al composite when the
10 um carbon coating was added to the fibre. Of
course. the coating reduced both radial stress ratios by
similar but not identical magnitudes.

4.2. Elastic-plastic response

The inelastic résponse of solids to thermomechanical
loading depends. in general. on the applied loading
path. Therefore. in contrast to the elastic response. it is
not possible to find overall moduli. coefficients of
thermal expansion, or thermomechanical stress con-
centrations that are independent of loading history. [n
what follows we present illustrative examples of in-
elastic deformation of the two composite systems un-
der monotonically increasing, overall thermal or
mechanical loading. [n the linearly hardening matrix
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assumed herein {cf. Section 2.2). the local instan-
taneous moduli remain constant during sustained
plastic loading along a proportional path. provided, of
course, that the yield stress does not change. There-
fore, under proportional mechanical loading at con-
stant temperature which causes plastic yielding in all
elements of the subdivided unit cell. the local fields
change proportionally. This property may be useful in
interpretation of the numerical results.

For uniform changes in temperature throughout
the volume of the composite. the effect of matrix
plastic flow on the local stresses was evaluated for
cooldown to room temperature from a stress-free state
at 1200 C for the SCS6 Ni Al composite and from
950 C for the SCS6.Ti;Al composite. Along these
thermal paths. the nickel-based matrix exhibited ex-
tensive plastic deformation. but the titanium-based
matrix remained mostly elastic. This is consistent with
the variation of the matrix yield stress with temper-
ature shown in Fig. 6.

First. we consider the local stresses in a SCS6 Ni;Al
composite. Figs [1-13 show stress contours of the
transverse normal stress. o,., and the transverse shear
stress. 0,;. found at room temperature 1in uncoated
and carbon-coated fibre systems. Fig. 11 represents
the actual field. ©,;. and Fig. 12 the same field nor-
malized by the AT = {179 "C temperature difference
along the cooling path. This was done to facilitate
comparisons with the normalized elastic field in Fig. 7.
[t is seen that the local stress. temperature ratios were
reduced substantially by the plastic deformation of the
matrix. This can be understood by comparing the
Young's moduli, E. with the plastic tangent moduli. H.
in Table II. During plastic straining. the matrix be-
comes very compliant compared to the fibre and can
therefore deform at much lower ratios of stress tem-
perature increments. In fact. the stiffness of the matrix
in the plastic range is approximately comparable to




(b}

Figure |/ Transverse normal stresses. 5, ,. i the SCS6. Ni;Al composite after cooling from 1200 -C to room temperature: (a) uncoated fibre.
ib) carbon-coated fibre.
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Figure i) Transverse normal stresses in the
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Freure 13 Shear stress. o, .1 the tranverse plane of the SCS6 Ni Al composite after cooling from 1200 C to room temperature: (a1 uncoated
fibre. (b curbon-coated tibre.
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the stiffness of the carbon coating 5o that the differ-
ences in the stress ratios found in the coated and the
uncoated fibre systems are not significant. The defor-
mation itself was quite extensive. For cooling from the
assumed state free of internal stresses at 1200 "C, the
onset of matrix yielding was found at 1140 'C, or after
a —60°C change in the uncoated fibre composite, and
at 1020 °C. after a —180°C change in the carbon-
coated fibre system. Plastic yielding then proceeded
along the entire cooling path to 21 'C.

Contours of the isotropic part of the local stress
field are shown in Fig. 14. and of the normalized
second invariant of the deviatoric stress field in
Fig. 15. Large stress gradients are observed in the local
fields. As expected, plastic flow of the matrix started at
the fibre. matrix or coating, matrix interface where the
stress concentrations were high. The stress contours
indicate that the internal stresses can be approximated

by an axisymmetric field: this may not be possible at
larger fibre concentrations. A comparison of Figs {4
and 15 indicates that the cooldown causes both large
hydrostatic stresses and plastic flow in the entire
matrix volume. Examples of evolution of plastic zones
in the matrix during cooldown to room temperature
are shown in Fig. 16.

Next, we turn our attention to the SCS6/Ti,Al
composite. Figs 17-20 illustrate the stresses found
after cooling from 950°C to room temperature. As
indicated by the variation of the vield stress of the
Ti;Al matrix with temperature, Table III, the matrix
remains mostly elastic in this case, Fig. 20. Conse-
qQuently, relatively large stresses exist in the system
after cooldown to room temperature. In the coated
system, however, the stresses in the matrix are reduced
by the compliant carbon coating and are similar to the
stresses found in the nickel-based system.

‘e 4 Isotropic stress. C,. in the SCS6 Ni,Al composite after cooling from 1200°C to room temperature: (a) uncoated hbre.

tb. carbon-coated fibre.

(b}

Figure 15 Effective stress 13J,)' * 1n the SCS6 Ni;Al composite after cooling from 1200 C to room temperature. normalized by v

121 €1 = 79 MPa. (a) uncoated fibre. (bt carbon-coated fibre.
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Figure 16 Evolution of plastic zones in the matrix SCS6 Ni,Al composite during cooling from 1200 C to room temperature: (a) uncouted
fibre. (b) carbon-coated fibre.

{a) (b)

Figure |~ Transverse normal stresses. o,,. in the SCS6 T: Al .omposite after cooling from 950 C to room temperature: 1a) uncoated fibre.
by carbon-coated tibre.
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Figure 18 Shear stress. @, ,. in the tranverse plane of the SCS6 Ti Al composite after cooling from 950 C to room temperature (at uncoated
fibre. th) carbon-coated fibre.
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Figure 19 Isotropic stress, G, in the SCS6 Ti Al composite after cooling from 950 C to room temperature: (a} uncoated fibre.
(b) carbon-¢oated fibre. :
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Figure 2) Effective stress. (3J,)' 2 in the SCS6 Ti,Al composite after cooling from 950 C to room temperature. normalized by v _
(21°C) = 500 MPa (a} uncoated fibre. (b} carbon-coated fibre.
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Figure 21 Normalized tranverse normal stresses. A0,. A6,,.1n the SCS6 Ni,Al composite after loading by overall transverse normal iress

te &, =225 MPa

12




Figure 21 Normalized tranverse normal stresses, AG,, AG,,. in the SCS6.Ti, Al composite after loading by overall transverse normal stress

to G,, = 605 MPa.

To illustrate the magnitudes of local stresses caused
during inelastic deformation under mechanical load-
ing, we present results for loading from a stress-free
state by an overall transverse tension stress to such
levels that produced sustained plastic straining in all
subelements in the matrix volume. These were found
as &,; = 225 MPa in the SCS6/Ni;Al and &,; =
605 MPa in the SCS6/TijAl matrix systems. The local
stresses computed in the two composite systems at
these stress levels were normalized by the applied load
and contours were plotted in the unit cell, Figs 21 and
22. Selected local stress ratios appear in Table IV.

The results indicate that material selection for
monotonic loading should favour uncoated fibrous
systemns with ductile, compliant matrices over coated
fibres systems with matrices which remain elastic or
rather stiff during plastic low. However, plastic strain-
ing should be avoided under cyclic loads as it may lead
to low-cycle fatigue damage of the matrix.

5. Simulation of hot isostatic pressing
5.1. Analysis of the standard process

We now proceed to examine the stress states created
in the two intermetallic composite systems by hot
isostatic pressing (HIP). In addition to the standard
pressure-temperature cycle, we explored pressure and
temperature combinations that could lead to more
favourable distribution of residual stresses after cool-
ing to room temperature and reheating to the operat-
ing temperature. The results were obtained for the
PHA domain shown in Fig. 3b using the ABAQUS
finite element program. The composite was assumed
to be free of external loads and internal stresses at the
beginning of the path at fabrication. temperature.
Then. the selected pressure was applied in a single step
if the composite remained elastic. or incrementally
when plastic straining was involved. This was followed
by combined pressure and temperature changes dur-

ing cooling. As in Section 2.2, a rate-independent
thermoplasticity theory was used. The analysis ne-
glects the role of possible rate effects. and thus implies
that cooldown to room temperature and reduction of
the hydrostatic stress to the atmospheric value take
place at a very slow rate. Evaluation of the rate effects
during fabrication, which may be significant in some
composite systems, requires application of a viscoplas-
ticity theory for the ductile phases. This has been
considered in our yet unpublished work using the
viscoplastic constitutive equations reported by
Bahei-El-Din et al. [16] and Shah [26].

The temperature-overall hydrostatic pressure com-
binations applied to the SCS6:Ni;Al composite are
shown schematically in Fig. 23. Conditions similar to
those shown in Fig. 23a and c were applied to the
SCS6/Ti;Al system: however. the fabrication temper-
ature was taken as T = 950 °C. and the initial pres-
sure as 200 or 400 MPa. In addition, we applied modi-
fied pressure conditions. with the ratio of the axial to
transverse hydrostatic pressure ranging from 0-1.5. to
promote plastic yielding of the matrix.

In typical HIP cycles. the cooling/unloading path to
room temperature and atmospheric pressure is usually
linear, as in Fig. 23a. Under the hydrostatic load. the
local stress field is not necessarily isotropic. hence
plastic low may take place in the matrix during ap-
plication of the pressure. Go. In the systems con-
sidered, the local stresses in the matrix are dominated
by an isotropic stress field so that the matrix, which is
assumed to be plasticaily incompressible. remains
elastic at the fabrication temperature and 200 MPa
hydrostatic pressure. However, the two intermetallic
composites exhibited different deformation behaviour
under the linear cooldown, depressurization cycle. In
agreement with the variation of the yield stress with
temperature of the nickle aluminide and the titanium
aluminide matrix. Fig. 6. the SCS6 Ni Al composite
exhibited substantial plastic deformations while the
SCS6. Ti Al composite remained mainly elastic.
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Figure 23 Thermomechanical unloading programmes applied to simulate modified hot isostatic pressing.

Fig. 24 shows the distribution of the axial, radial,
and hoop stresses, o, = 5,,, o, Ty, along the x,-
axis in the unit cell for uncoated and coated
SCS6/Ni;Al composite after the HIP cycle, at room
temperature and in complete unloading. The inset in
the figures indicates the loading/unloading path as-
sumed in this simulation. The axial stress in the fbre

is uniform and compressive. The magnitude of the
fibre axial stress is reduced substantially if the fibre is
coated by a thin carbon layer. However. the coating
itself sustains large axial tensile stress after cooldown
to room temperature. The matrix axial stress is also
uniform, but the radial and hoop stresses are not

uniform. Large tensile stresses develop i

n the matrix at
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Figure 24 Distribution of axial. radial and hoop stresses in the SCS6-Ni Al composite at room temperature after hot isostatic pressing: 1a1
uncoated fibre. (b) carbon-coated fibre.
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the fibre matrix interface in the axial and hoop direc-
tions. Comparing the plots in Fig. 24a and b, we see
that the matrix stress in the SCS6/Ni;Al composite
does not benefit from the presence of the fibre coating.

Fig. 25 shows the internal stresses after reheating to
1200 “C. Because the composite deformed plastically
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Figure 25 Distribution of axial, radial and hoop stresses in the
SCS6 Ni Al composite after hot isostatic pressing and reheating to
1200 -C: (a} uncoated fibre. (b} carbon-coated fibre.
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in the cooling cycle, the residual stresses did not van-
ish after reheating.

Depending on the direction of the subsequent load,
the residual stresses may improve or impair the over-
all strength. For example, if overall transverse tension
is applied to the composite at 1200°C (see the con-
tours in Figs 9 and 12) the matrix tensile stress in the
radial direction is elevated by the residual stress,
whereas the tensile stress in the hoop direction is
reduced by the compressive residual stress. This re-
duces the likelihood of developing radial cracks in the
matrix and increases the possibility of debonding at
the interface.

The residual stresses found at room temperature in
uncoated and coated SCS6,Ti;Al composite are
shown in Fig. 26. Compared to the nickel-based sys-
tem, much larger thermal stresses were found in the
matrix of the uncoated titanium-based system. Of
course, this is the consequence of plastic straining in
the Ni,Al matrix, and elastic deformation in the Ti;Al
matrix. However, for the same reason. the magnitude
of the radial and hoop stresses in the Ti;Al matrix
were reduced by more than a factor of two by the fibre
coating, Fig. 26, while remained unchanged in the
Ni;Al matrix, Fig. 24. Also, the residual stresses were
completely removed by reheating the TiyAl matrix
composite to 950 °C.

5.2. Effect of HIP parameters on residual
stresses

The results presented in the preceding sections indi-

cate that plastic flow of the matrix causes redistri-

bution of the local stresses and reduction of the
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Figure 26 Distribution of axial. radial and hoop stresses in the SCS6. Ti, Al composite at room temperature after hot isostatic pressing: 1)

uncoated fibre. (b) carbon-coated fibre.
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interfacial stresses in the matrix. This feature can be
utilized in optimizing the temperature, pressure path
in order to reduce the adverse local stresses. In this
section, we examine various HIP regimes and evaluate
the corresponding local stresses in the two intermetal-
lic composites considered above.

First. we computed the local residual stresses re-
tained in the SCS6/Ni,Al system at room temperature
after exposure to an HIP temperature of 1200 °C and
hydrostatic pressure of 200 or 400 M Pa, when unload-
ing was reached through the various options shown in
Fig. 23b-f, including an excursion below room tem-
perature. Fig. 23f For the loading cases shown in
Fig. 23a, b, d and e, the stresses at the end of the HIP
cycle were very similar. On the other hand, the tensile
stresses were substantially reduced when the hydro-
static pressure, 0o, was sustained during cooldown of
the composite, Fig. 23c. Moreover, the tensile stresses
in the phases were lower when the higher hydrostatic
pressure of 400 MPa was maintained during the HIP
process.

The interfacial and internal matrix stresses com-
puted in uncoated and carbon-coated SCS6/NisAl
composites for the various conditions are shown in
Tables V and VI. Table V lists the radial stress o,,,
hoop stress oy, and axial stress G... found at the
interface at either point “a” or point "b" indicated on

the unit cell shown in the inset. The average isotropic
stress in the matrix oT is also indicated. Table VI
shows the local stresses found in the matrix internal
point “c" (see inset of unit cell), the axial stress
ofi = o, the transverse stress o7, and the isotropic
stress of.

Note the substantial reduction of the radial and
hoop stresses at the interface between the first and last
regimes in Tables V and VI. As discussed below, this
reduction is mostly due to more extensive plastic
straining caused by the higher and sustained hydro-
static stress. It appears that the tensile stresses would
be reduced further by increasing the hydrostatic pres-
sure, provided that fibre splitting could be avoided.
The matrix interfacial tensile stresses in the coated
system have been also reduced. but to a lesser extent.
by following the loading path indicated in Fig. 23c
Table V. The hoop stress in the coating, however. is
not affected by the thermomechanical path. The pres-
sure applied during the HIP process did not much
affect the stresses, in the coated system.

Of course. reheating to 1200 °C did not eliminate
the residual stresses, Tables VII and VIII. However.
the stresses in the reheated systems were not much
affected by the processing path. or by the magnitude of
the hydrostatic pressure, o, applied.

Table IX summarizes the results found for the

TABLE V Maximum interface stresses found in a SCS6/Ni, Al composite at room temperature after HIP

tr T T T
1200°C 1200°C 1200°C 1200°C
b 21 21°C 21°C 21°C
0 ao - 200 MPa 0 g - 400 MPa R —a00MPa {0 o,
-250°C
Interface stress Uncoated Coated Uncoated Coated Uncoated Coated Uncoated Coated
IMPa) fibre tibre fibre fibre tibre tibre tibre fibre
Lo i -98atb -8 arb -"atb -94ab -60atb -9lab -3atb  ~30atb
oy 190 at b 158 at b 155 atb 152 atb 120 at b 152atb 127 at b 139 4t b
o 198 at b 186 at b 179 at b 143 atb 161 at b 14t atb 1S3atb 123 at b
Gl ~ 185 ata - 188 at a - 188 ata - 198 at a
oy - - 668 at b - —-633atb - -624arb - -623atb
o, -98atb —110atb -Matb —i22atb -60atb - 12latb -3 ab —108arb
al, ~94ata -108ata -ata -—1Il7ata ~S9ata -~ 1t6ata -3ata - 10data
ay, —605atb -364atb - 552atb -280ath -M0atb -26latb -~397atb - (86 ath
ag 97atb 87 atb ¥5atb 67 at b datb 67atb 82atd 6l atb
TABLE VI Matrix internal stresses found 1n a SCS6 Ni Al composite at room temperature after HIP -
T T T A7
P 1200°C 1200°C 1200°C 1200°C
:.21 21C 21°C r21°c
— — [¢]
~ 200 MPa 0 g, - 200 MPa 0 g, - 400 MPa 0 o, 400 MPa Go
. -250°C
Stress at point ¢ Uncoated Coated Uncoated Coated Uncoated Coated Uncoated Coated
{MPa) fibre fibre fibre fibre . libre fibre fibre fibre
at, =a 213 213 195 179 177 177 138 149
a?, 115 128 96 162 76 164 42 141
oy 10! 105 90 106 79 106 37 39




TABLE VII Maximum interface stresses found in a SCS6'Ni,Al composite at room temperature after HIP and reheating to fabrication
temperature

T T T T
\ 1200°C 12(10'(: 1200°C 1200°C
!
21 = 21°C 21°C 21°C
- 200 MPa 0 o, - 200 MPa 0 g, - 400 MPa 0 o, -s00MPa [0 g,
-250°C
Interface stress Uncoated Coated Uncoated Coated Uncoated Coated Uncoated  Coated
(MPa) fibre fibre fibre fibre fibre fibre fibre fibre
ol 76 at a 52ata T6ata 0ata 76 ata 49ata 77ata Slata
o3 -55ata —67ataorb —S55ata —66atb —-55ata —-66athb —55ata  —67ataord
on ~62ata —-80ata —62ata -80ata —62ata —8lata —-62ata -—8ata
Gl - Tatb - 6atb - © 6atb - 8atb
o}, - 126ataorb - 26 ataorb - [26ataorbd - {26ataorb
of 76 ata 65ata 76ata 64 ata 76 at a 63ata 77 at a 64ata
cr§e 72ath 60 at b 72atb S7Tatb 72atb 57 atb 7l atb S8 at b
o, Mata 298 ata J72ata 299 ata 373 ata 299 ata 3N ata 298 ata
ol —l4ata —-3ata —14ata -33ata -14ata -34ata —13ata -32ara

TABLE VIII Matrix internal stresses found in a SCS6:Ni,Al composite at room temperature after HIP and reheating to fabrication
temperature

T T T T
Y F1200°C 1200°C 1200°C 1200°C
L. 21 2Q1°C 21°C 21°C
- 200 MPa 0 g, - 200 MPa 0 g, -400MPa 0 g, —400mPa |0 g
-2580°C
Stress at point ¢ Uncoated Coated Uncoated  Coated Uncoated  Coated Uncoated  Coated
{MPa) fibre fibre fibre fibre fibre fibre fibre fibre
el = o - 132 - 127 - 132 - 124 - 132 - 123 -132 - 124
T 13 13 13 14 13 15 13 14
oy - 62 -64 - 62 - 63 - 62 - 62 -62 - 63

TABLE IX Maximum interface stresses found in a SCS6/Ti;Al composite at room temperature after HIP

T T
i-m-e 950°C
L 21 21°C

400 MPa 0 g, ~ 400 MPa % g,
Interface stress " Uncoated Coated Uncoated Coated
(MPa) fibre fibre - fibre fibre
an -20atb ~79ata -~ 178 atb ~79ata
oo 323athb 17t ata 165 at b 171 ata
ol 253 ath 308 at a 133atb J08 ata
Gl - 146 at b - 146 at b
o - - 669 at b - — 669 at b
o - 210atb -105atb - 178 atb —~105ath
ol -182ata ~ 106 ata -149ata, —105ata
o —883atb -632atb —-827atb —632atb

uncoated and carbon-coated SCS6/Ti;Al composites.  loading path indicated in Fig. 23a at 950°C. The
Apart from very localized matrix yielding at the  matrix also remained elastic and the local stresses
fibre/matrix interface in the uncoated fibre system, this  were unaltered when the hydrostatic pressure. 55, was
composite remained elastic when subjected to the increased from 200 MPa to 400 MPa and then
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reduced proportionally during cooling. On the other
hand. plastic low of the matrix was induced early in
the HIP process of the uncoated fibre system, and the
matrix experienced substantial plastic deformation
when the HIP path shown in Fig. 23¢ was followed
from 930°C at sustained hydrostatic pressure of
400 MPa. The hoop stress and the axial stress in the
matnx of the uncoated system were reduced by ap-
proximately 49%. These reductions in the local stres-
ses are larger than those found in the nickel-based
system. Table V. This may be attributed to more
extensive plastic straining at the low plastic tangent
modulus of the titanium aluminide matrix, Table IIL

5.3. Modified pressure ratios

To exp’ vre other possible alternatives that could mag-
nify tt.. favourable effect of plastic straining on the
distribution of residual stresses; we applied modified
HIP cycles in which the axia) pressure ¢f, and the
transverse hydrostatic pressure oJ, assumed different
magnitudes. The resuits are shown in Tables X-XI11
for o5 = 400 MPa, and o?/a7 ratios of 00, 0.5, 1.0,
L.5. In these calculations, the axial pressure and the
transverse hydrostatic pressure were held constant
during cooldown to room temperature.

The axial tensile stress in the matrix benefited most
from reducing the axial pressure during hot isostatic
pressing of the composite, particularly in uncoated
fibre systems. Compared to the standard HIP
methods in which a three-dimensional hydrostatic
pressure was applied, o8 = of, the matrix axial stress
was reduced by 50%-60% in the SCS6/Ni;Al com-
posite when o0 = 0.5, and by 73%-115% in the
SCS6/Ti;Al composite when of/of =00. As ex-
pected. the axial compressive stress in the fibre and

TABLE X Interface stresses found in uncoated SCS6/Ni,Al com-
posite at room temperature after HIP with modified pressure condi-
tions

Interface stress o4, 0]
(MPa)
0.0 0.5 1.0 1.5
o™ ata - 100 - 106 107 - 109
atb - -6l - 62 -39 - 66
ot ata 10 102 88 17
atb 13t 129 120 142
ol ata S5 9 125 191
atb s 78 162 2
of, ata -57 -5 -8 -2
atb - 86 -89 - 88 -93
ofata ~ 194 - 196 -508 -6l2
atb —- 188 - 190 - 501 - 606
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TABLE XI Interface stresses found in carbon-coated SCS6 N1 Al
composite at room temperature after HIP with modified pressure
conditions

ol T
L - 1200°C
A
- 21°C
- 400 MPa 10 aq
Interface siress o3 o7
(MPa)
0.0 0.5 1.0 L5

o™ ata —98 - 108 -3 -107

atb - 86 -9 -9 ~92
opata 149 149 150 150

atb 156 156 152 154
or ata 1z 121 134 149

at b 109 125 141 163
o5 ata 160 163 166 163

atb 162 159 155 159
oy ata - 3571 - 592 - 630 - 654

atb - 565 - 586 - 625 - 649
o ata ~ 154 - 165 —170 - 165

atb ~112 - 118 - 121 - 120
ol ata - 107 - 114 -6 —115

atb - 144 - 154 - 161 - 155
of ata - 126 - 176 =270 -3

atb -121 - 170 — 265 -2

TABLE XI1I Interface stresses found in uncoated SCS6 Ti A’
composite at room temperature after HIP with modified pressure
conditions '

of tr
e f?m 350°C
|
ooAlv
- - --d.21ﬂc
- 400 MPa % o,
Interface stress  o/a]
{(MPa)
0.0 0.5 1.0 1.5
onata - 174 - 190 - 204 - 210
ath 14 - 161 - 178 - 190
of ata 141 139 135 141
atb 168 167 165 168
orata -13 37 90 148
atb 35 85 133 182
ol ata -9 -132 -9 _1s6
atb ~ 184 - 205 - 219 -2
ol ata - 530 - 736 - 815 -~ 841
atb - 538 -748 827 _g3ss

coating was lower when the overall axial pressure was
reduced.

In contrast, the tensile matrix hoop stress found in
all cases considered in Tables X-XIII changed only
slightly when the overall axial pressure and the trans-
verse hydrostatic pressure had different magnitudes

A T
Co # Op.




TABLE XIII Interface stresses found in  carbon-coated
SCS6 Ti Al composite at room temperature after HIP with modi-
fied pressure conditions

b7
¢ = F===F¥===T 950°C
i
°°A.' ad
-cocaomosd21°C
- 400 MPa 0 o,
Interface stress c‘;‘ al
(MPa)
00 05 Lo LS
opata -93 - 83 -79 -79
atb - 10t -89 -84 -84
onata 208 189 171 171
atb 194 177 165 165
opata 211 RS 308 308
atb 221 289 304 304
g, ata 127 128 130 130
atb 126 126 125 125
o ata -84 —653 - 669 - 669
atb — 586 - 655 - 671 - 671
of ata - 159 — 145 - 139 - 139
atb - 123 - 110 - 105 - 105
ol ata - 123 - 110 - 105 - 105
atb — 148 - 134 - 128 - 128
of ata —434 - 601 - 640 - 640
atb - 427 — 593 - 632 —-632

5.4. Mechanical loading of processed
composites

To complete the numerical simulations of the inelastic

response of the two composite systems, we applied

transverse tension stresses to systems processed with

the standard and modified HIP cycles. The mechan-
ical stress levels chosen were equal to those emploved
earlier to stress-free systems in Figs 21 and 22. The
processing sequences and local stress magnitudes at
the maximum stress are shown in Tables XIV and XV.
Then, Table XVI compares the local stresses attained
after fabrication alone, following the regime indicated
in the table, with those found after mechanical loading -
applied alone from a stress-free state at room temper-
ature {Section 4.2) and finally with those found after
transverse loading of the fabricated composites with
the initial residual stresses.

Note that during plastic straining of the fabricated
systems. the differences in the residual stresses after
fabrication, Tables V and VI, have no discernible
effect on the final stress state. However, there are large
differences between the local stresses reached after
loading from the stress-free state, and from the fab-
ricated state.

5.5. Interpretation of the results
To gain a better insight into the numerical results. we
present here a simplified analysis of unidirectional
fibrous systems exposed to pressure temperature
loads. using the thermomechanical equivalence [34,
35]. The local fields and overall response under ther-
mal changes applied to elastic or inelastic, unidirec-
tionally reinforced fibrous composites can be found by
superposition of a certain uniform stress field in the
phases with a field corresponding to an overall mech-
anical load that removes the surface tractions of the
uniform stress field.

For composites with two isotropic phases of any
microgeometry, which are subjected to a uniform

TABLE XIV Interface stress found in SCS6,Ni; Al composite at room temperature after HIP and transverse tension of 255 MPa

r
1200°C
\-2!
—4& MPa 0 Ty

Interface stress

+8,, = 225 MPa

b7
1200°C

21°C
0 Co

—460 MPa

+&,, =225MPa

(MPa)
Uncoated fibre Coated fibre Uncoated fibre Coated fibre

ghata 170 192 17 191
atb - 143 - 135 - 143 - 138
o, ata 3t 249 310 251
atb 170 245 169 245
orata 3 310 320 311
atb 104 157 99 157
c., ata - 128 - 126
at b - 226 - 227
oy ata - — 674 - . —~ 674
atb - ~ 738 - - 737
ol ata 170 184 171 183
atb - 143 - 125 - 143 - 125
ol ata ~ 5l - 52 - 49 -5
athb 287 230 259 230
of ata — 686 - 432 — 684 —~ 432
atb — 680 - 439 -~ 678 — 438
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TABLE XV Interface stresses found in SCS6 Ti, Al composite at room temperature after HIP with transverse tension of 605 MPa

AT
™ -
: 21 2150
-400 MPa 0 g - 400 MPa 0 og
Interface stress +&,, = 605 MPa +&,, =605MPa
{MPa) -
Uncoated fibre Coated fibre Uncoated fibre Coated fibre
ol ata 578 593 626 593
at b 75 - 53 68 - 53
G, ata 500 53 348 53
at b 51 604 418 604
oF dta 454 408 323 408
atb 253 287 160 287
.o, ata - 24 - 24
atb - 244 - 244
o ata - - 662 - - 662
at b - - 787 - - 787
c;r at a 578 664 626 664 ’
atb 75 7 N 68 7
gl ata ~ 165 41 -4 2
at b 702 762 735 762
gy, ata - 1076 - 733 ~ 1009 - 733
atb - 1005 - 721 -972 -T2

TABLE XVI Comparison of matrix interface stresses found in
intermetailic matnx composites after fabrication and transverse
tension

r
To
21°C
~ 400 MPa 0 g,
Interface stress SCS6:Ni Al SCS6.Ti,Al
{MPa)
Uncoated Coated  Uncoated Coated
fibre fibre fibre fibre
Fabrication T, = 1200°C T, =950°C
c ata - 107 - 113 - 204 -7
g, atb 120 152 165 165
Overall &, 225 MPa ‘605 MPa
o, ata m 250 774 629
g, ath 25 126 206 563
Fab. + 225 MPa Fab. + 605 MPa
o, ata ! 191 626 593
c,atb 169 245 418 604

temperature change (T — Ty), one can find the uni-
form stress field in phases as

S= - [3(1( - 1m)/,(lle - l/Km)](T— To) “4)

where the elastic bulk modulus and coefficient of ther-
mal expansion of the matrix and fibre are denoted,
respectively. by K. %, K¢, 3.

If thermoelastic properties of the phases are func-
tions of temperature. then K. and K; denote the
magnitudes of the phase bulk moduli at the current
temperature 7. whereas ¥, and , are replaced by the
averages | {1 x(T)dT! (T~ To).r = fim [36]. In typ-
ical composite systems with isotropic phases in which
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Ki>K, and % < %y, the cooldown from T, to
T causes uniform hydrostatic tension. Equation 14, in
the entire composite. Because S is an isotropic stress in
all phases, it does not cause inelastic deformation in
a plastically incompressible material.

Of course, the internal field S is supported by cor-
responding surface tractions which are not actually
applied at the surface of the representative volume,
and must, therefore, be removed. If an overall uniform
stress, &. is applied to the composite simultaneously
with the temperature change, then the corresponding
tractions can be added to those created by an overall
stress equal to —S. The local stress ¢(x) referred to
a Cartesian coordinate system, x;,j=1.2.3, is then
given by [34, 37]

o(x) =51+ B(x)(d —S1) (15

where 1={111000]", and B(x) is a (6 x6) stress
concentration factor matrix. Note that this stress is
not uniform and may cause yielding. For fibrous me-
dia with transversely isotropic phases, where x, is the
fibre axial direction, the matrix B has the form (353

(B,, B, B, 0 0 0

B,y B:; By; 0 0 0

By By By 0 0 0 16
- )
B=10 o 0 B. 0 o ‘

0 0 0 0 By O

L0 0 0 0 0 By

The respective columns of B represent the local stres-
ses corresponding to a sequence of unit overall stresses
6 =i, k=12 ..6, where i, is the kth column of
a (6 x 6) unit matrix. Actual magnitudes of the coeffi-
cients must be found from analysis of a selected
micromechanical model. Such models tvpically




approximate the actual fields with piecewise uniform
distributions in a representative volume of the com-
posite. The periodic hexagonal array {PHA) model
(8. 9] employed here is an example of this approach.
Other examples are the self-consistent method [1],
Mori-Tanaka modei {2, 3], and the vanishing fibre
diameter model [38]. in which only the phase average
stresses are determined. Hence, if N denotes the num-
ber of subelements. one finds .V = 2 for the averaging
models of two-phase composites, and N equal to the
number of subelements or integration points in the
unit ceil of the PHA model. In any case . Equation 15
1s replaced by

6, =S1+B(-Sl), r=12..N

(1

Under hot isostatic pressing of unidirectional com-
posites. the appiied overall stress is usually the three-
dimensional hvdrostatic stress. ,. Substituting
& = gol in Equation 17, the local stresses caused by
the thermomechanical loading are given by

=51+ B,S*l. S*=(0p—S) r=12....N

(18)

In this way, the thermomechanical HIP problem is
reduced to a mechanical problem in which the com-
posite is subjected to hvdrostatic pressure (G, — S).
Note that §* is often negative.

In modelling of the hot isostatic pressing of
SCS6,Ni;Al and SCS6/Ti Al composites reinforced
by uncoated fibres, the cooldown part of the ther-
momechanical loading regimes shown in Fig. 23 was
converted into the stress S. using Equation 14 and the
thermoelastic properties listed in Tables [-III. This
stress was combined with the hydrostatic pressure. o,
applied in the HIP process, and plotted against the
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current temperature. The individual points were
connected by straight line segments. The hydrostatic
pressure path found in this manner for selected HIP
loading regimes is shown in Figs 27 and 28 for
SCS6:Ni;Al and SCS6 Ti, Al composites. respectively.
The non-linear variation of this normalized pressure
with temperature is caused, in part, by the temper-
ature dependence of the yield stress and thermoelastic
properties of the phases.

This replacement of the actual thermomechanical
loads by the pressure S* = (o, — §) simplifies evalu-
ation of the onset of initial yielding of the composite
under standard and modified HIP regimes. The mag-
nitude of the overall hydrostatic stress. Sy. at initial
yielding in the matrix is found by substituting the local
stresses given by Equation 18 into a specified vield
function. Of course, NV such solutions can be found.
but only the lowest Sy corresponds to the onset of
yielding. In a J, material. the local hydrostatic stress
given by the first term in Equation 18 causes no plastic
deformation. Using the local stresses given by the
second term in Equation 18, and adopting the Mises
yield function (Equation 7) for the matrix material,
one finds the overall hydrostatic stress at initial yield-
ing as

SY = YABY, + 2B}, — By, — Bi: - By r=1LN

(19)

In the seif-consistent method. Equation 19 provides
a single solution. This is indicated by the upper dashed
curve in Figs 27 and 28. Under the HIP loads shown.
the onset of yielding is given by intersection of the
applied hydrostatic pressure and the hydrostatic yield
stress curves. Consistent with our finite element calcu-
lations, matrix yielding in the SCS6-Ni;Al composite
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Figure 27 Variation of the ( - - -) hydrostatic vield stress and ( -—— ) HIP equivalent hydrostatic pressure with temperuture for the
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uncoated SCS6 Ti,Al composite.

can be induced eartier in the HIP process by maintain-
ing the hydrostatic pressure, o, during cooldown to
room temperature. As we found eartier. this causes
redistribution of the local stresses and leads to reduc-
tion of the magnitude of the matrix stress. It is also
clear that increasing o, translates the applied load
curve in Fig. 27 upwards in the direction of the hy-
drostatic yield stress curve. In this case. initial yielding
of the composite takes place at a higher temperature
during the cooldown path. which may further reduce
the magnitude of the local stresses. The actual onset of
vielding will be different from that indicated in Fig. 27
if a more refined stress field is employed. The self-
consistent estimate of the initial yield stress for the
SCS6 Ti;Al composite reveals no yielding during the
HIP regimes shown in Fig. 28. On the other hand, our
calculations with the PHA model and the finite ele-
ment method indicated plastic yielding in this system
for some of the HIP paths. The conclusion drawn
from Fig. 28 is that initial yielding can be induced
earlier in the process by modifying the HIP path such
that cooldown to room temperature takes place at
a constant, high pressure.

Another modification of the HIP path which may
improve the local stresses. is the superposition of an
isotropic stress, of. in the transverse plane of the
composite. as in Section 5.3. In this case, the loads
applied consist of the hydrostatic stress. S. caused by
the temperat.re change. the hydrostatic pressure. g,
and the overall transverse hydrostatic stress.
& =[0050§000]". Substituting into Equation 17,
and using the Mises yield function (Equation 7), the
hydrostatic initial yield stress is found as

Y =(Y-ol(B% + By - 2B1,))/

(B:1+33;:-B’:1‘Brzz—3’zs) r=1.N

{20)
22

It is seen from Equation 20 that the magnitude of the
initial yield hydrostatic stress is reduced by super-
imposing the transverse isotropic pressure. 5§. Equa-
tion 20 is plotted in Figs 27 and 28 for selected
magnitudes of o, where the stress concentration fac-
tors were found with the self-consistent method. The
onset of yielding was found at the intersection of the
applied load curve and the S?" curve. The actual vield
temperature depends on the magnitude of the iso-
tropic pressure, o, maintained during the process.
and it can be elevated substantially by increasing of.
These observations indicate how the processing para-
meters contribute to earlier, more extensive plastic
straining, and thus to reduction of residual stresses.

6. Conclusion

Adverse thermal residual stresses generated during
fabrication of fibrous composites can be reduced by
a CVD carbon coating. The fibre coating provides
a buffer that reduces the fibre;matrix constraint and
the stresses caused by thermal mismatch of the phases.
However. the coating may cause higher concentra-
tions of certain stress components under mechanical
loading. This is true. in particular, for the matrix hoop
stress at the interface with the coated fibre. under
overall transverse normal stress. The magnitude of
these effects also depends on the relative stiffness of the
matrix, fibre and coating.

Plastic flow of the matrix under overall transverse
tension may cause substantial reductions in the tensile
interfacial stresses. The implication is that mechanical
compatibility in fibrous composites depends not only
on the thermomechanical phase properties. but also
on the inelastic response of the phases. A reasonably
accurate evaluation of thermal residual stresses re-
quires a refined micromechanical model. such as the




PHA model used here. A qualitative assessment of
initial yielding during fabrication helps to identify
effective HIP regimes, and can be performed with
simple micromechanical models, e.g. the self-consis-
tent or Mori-Tanaka schemes.

Numerical evaluations of the local stresses in the two
intermetallic composites indicate that significant reduc-
tions in thermal residual stresses after hot iso-
static pressing can be achieved by modifying the pro-
cessing path. Most of the reductions in the adverse
stresses in the matrix were obtained when cooldown to
room temperature took place at a constant pres-
sure. Increased pressure helped reduce the local stresses.

Another modification found effective in relieving
the matrix residual tensile stresses is the application of
axial compression which is smaller than the transverse
hydrostatic pressure. The matrix axial tensile stress
was found to be smallest when the overall axial stress
was absent. In this case, the magnitudes of the fibre
axial stress and the radial stress at the interface were
also reduced. but remained compressive at the end of
the HIP cycle. While decreasing the overall axial pres-
sure relative to the transverse hydrostatic pressure
caused significant reductions in the axial stresses and
radial stresses in the phases. it also enhanced the
matrix tensile hoop stress slightly. The smallest matrix
hoop stress was found under three-dimensional hy-
drostatic pressure.

Thermal residual stresses generated in composite
materials have a profound effect on their performance
‘in service. In particular, the residual stresses may
reduce or enhance the local stresses developed in the
phases under service loads. The differences in the
residual stresses after fabrication by variable HIP
parameters, however. have a minor effect on the final
stress states.

Acknowiledgements

This work was supported. in part. by the Air Force
Office of Scientific Research. the Office of Naval Re-
search. and the ONR ARPA programme at Rens-
selaer. The work of G. J. Dvorak was supported. in
part. by the New York State NYSERDA Program.
Drs Walter Jones. Yapa Rajapakse, William Coblenz
and Steve Fishman served as programme monitors.
Mr Amr Wafa made some finite element calculations
used herein. ’

References

I R HILL.J. Mech Phvs. Solids 13 11965 189.

2 T MORland K. TANAKA. dcta Merall. 2111973) 571

3. Y BENVENISTE. Mech. Mater. 6 11987) (47,

4 Y BENVENISTE. G J DVORAK and T CHEN. hid.

7 (1989 305

G J DVORAK. Y A BAHEI-EL-DIN, R. S SHAH and

H NIGAM.in “Inelastic Deformation of Composite Mater-

1als”. edited by G. J. Dvorak 1Springer. New York. 1990) p.

270. .

6. G J DVORAK Jnd Y A BAHEI!-EL-DIN. dcta Mech. 69
119871 219,

7. R HILL. J. Mech. Phys. Solids 15 (1967) 79.

8 G J DVYORAK and J L. TEPLY. in "Plasticity Today:
Modeling, Methods and Applications”™. W. Olszak Memonal

o

Volume. edited by A. Sawczuk and V. Bianchi iElsevier
Science. Amsterdam. 1985) p. 624.

9. J. L. TEPLY and G J. DVORAK. J. Mech. Phys. Solids 36
(1988) 29.

10. s. NEMAT-NASSER, T. IWAKUMA and M. HEJAZI.
Mech. Mater. 1 (1982) 239,

I1. J. ABOUDL. Solid Mech. Arch. 11 (1986) 141.

12. G.J. DVORAK. Proc. R. Soc. Lond. 4 437 (1992) 311.

13. Y.A.BAHEI-EL-DINand G.J. DVORAK, in "Metal Matrix
Composites: Testing, Analysis, and Failure Modes”. ASTM
STP 1032, edited by W. S. Johnson {American Society for
Testing and Materials, Philadeiphia, PA. 1989) p. 103.

14 G. J. DVORAK. in “Metal Matrix Composites™, Vol. 2.
“Mechanisms and Properties™, edited by R. K. Everett and R.
J. Arsenault (Academic Press, Boston. 1990) p. 1.

15. Y. A. BAHEI-EL-DIN. G.]. DVORAK and R S. SHAH. in
“Computational Experiments”. ASME PVP. Vol. 176, edited
by W. K. Liu. P. Smolinski. R. Ohayon. J. Navickas and J.
Gvildys (American Society for Mechanical Engineers. New
York. 1989) p. 125.

16. Y. A BAHEI-EL-DIN.R.S.SHAHand G. J. DVORAK. in
“Mechanics of Composites at Elevated and Cryogenic Tem-
peratures”. ASME AMD., Vol. 118, edited by S. N. Singhal. W.
F. Jones and C.T. Herakovich {American Society for Mechan-
ical Engineers. New York. 1991) p. 67.

17. G. J. DVORAK. Y. A. BAHEI-EL-DIN. Y. MACHERET
and C. H. LIU. J. Mech. Phys. Solids 36 (1988) 655.

18. H.NIGAM.G.J. DVORAKand Y A. BAHEI-EL-DIN. /nt.
J. Plasticity. 10 (1994) 23.

19.  Idem. ibid. 10 (1994) 49.

20. Y. A.BAHEI-EL-DIN.G.J. DVORAK. J. LIN.R.S.SHAH
andJ. F. WU. "Local Fields and Overail Response of Fibrous
and Particulate Metal Matrix Composites” Final Technical
Report. Alcoa Laboratory, Contract 379 (S2R)0S3(22L).
November 1987.

21. "ABAQUS User's Manual” (Hibbit. Karlsson and Sorensen.
Providence, RI. 1989). .

22. Y. A BAHEI-EL-DIN. in "Thermal and Mechanical Behav-
ior of Ceramic and Metal Matrix Composites™, ASTM STP
1080. edited by J. M. Kennedy. H. H. Moeller and W S.
Johnson {American Society for Testing and Matenials. Phil-
adelphia. PA. 1990) p. 20.

23 G.J. DVORAK.T CHENandJ L. TEPLY. Compos. Sci.
Technol. 43 (1992) 347

34 R.HILL. J. Mech. Phys. Solids 12 (1964) 199.

25. P. M. NAGHDI. in “Plasticity. Proceedings of the Second
Symposium on Naval Structural Mechanics™ (Pergamon
Press. 1960) p. 121.

26. R. S. SHAH. PhD thesis. Rensselaer Polvtechnic [nstitute.
Troy. NY {1991).

27 Y F.DAFALIASand E. P POPOV.J. Appl. Mech. 43(1976)
645.

28. R.J. DIEFENDORF. private commumcation (1990).

219. N S.STOLOFF. [nt. Mater. Rer. 34 1989) 153.

30. F H. FROES.C.SURYANARAYANAandD ELIEZER.J.

Mater. Sci. 27 (1992) 5113.

M. MITTNICK. SAMPE J. 26 11990) 49.

N.S. STOLOFF and D. E. ALMAN. Muater. Sci. Eny. Al44

(1991) 5t.

33 Y A/ BAHEIN-EL-DINand G J. DVORAK.in "Damage and
Oxidation Protection in High Temperature Composites”.
Vol. 2. ASME AD. Vol. 25-2, edited by G. K. Haritos and O.
O. Ochoa {American Society for Mechanical Engineers, New
York. 1990) p. 2L

34 G J. DVORAK.J. Appl. Mech. 53 (1986) 737.

35. {dem. Proc. R. Soc. Lond. A431 (1990) $9.

36. Y. A BAHE!I.EL-DIN, Int. J. Plasticity 8 11992) 867,

7. G.J. DVORAK.J. Thermal Stresses 15 11992) 211.

38. G.J.DVORAKandY.A.BAHEI-EL-DIN.J. Appl. Mech. 49
(1982) 327.

s
12—

Received 28 Sepiember 1993
and accepted 15 June 1994

23




Computer-Aided Modeling Tools
for Composite Materials

Mark W. Beall, Jacob Fish,
Mark S. Shephard, George J. Dvorak,
Kam-Lun Shek and Rolf Wentorf

SCOREC Report #30-1993
Scientific Computation Research Center

To appear: Ceramic Engineering and Science Proceedings of the American Ceramic
Society’s 18th Annual Meeting & Exposition, Cocoa Beach, FL, January 9-12, 1994.

Scientific Computation Research Center
Rensselaer Polytechnic Institute
Troy, NY 12180-3590
voice 5182766795
fax 5182764886




COMPUTER-AIDED MODELING TOOLS FOR COMPOSITE MATERIALS

M.W. Beall, J. Fish, M..S. Shephard, G.J. Dvorak, K.L. Shek and R. Wentorf
Rensselaer Polytechnic Institute, Troy, NY 12180-3590

ABSTRACT

As part of Rensselaer’s ONR/ARPA URI on Mechanism-Based Modeling of Composite
Structures a set of computational and visualization tools are being developed and inte-
grated together to provide scientists and engineers with the means to better design com-
posite materials and structures. This paper briefly overviews the modular software
framework which underlies the system. Some of the underlying computational techniques
critical to the numerical analysis procedures are introduced, such as adaptive multiscale
modeling based on hierarchic superposition techniques and effective unit cell and other
micromechanical models. This paper shows examples of the application of these tech-
niques to understanding the behavior of composite materials and structures.

INTRODUCTION

The design of composite structures is a difficult task due to the fact that there are many dif-
ferent failure modes that must be taken into account. Often these failure modes occur at
scales which are much smaller than the scale of a component in a structure, down to the
scale of the microstructural constituents of the composite or smaller. Modeling an entire
structural component at a scale that will resolve all of the important features is not a prac-
tical approach to the analysis of the problem.

To make the problem of modeling a composite structure practical, assumptions must be
made about the behavior of the structure to reduce the size of the problem; these assump-
tions are generally referred to as idealizations. However, these idealizations are often not
valid over the entire domain and generally not validated as a part of the solution process.
A main focus of the current research is the development of adaptive tools that can be used
to estimate the error associated with specific idealizations and automatically adapt the ide-
alizations being used to reduce the error to the desired level. :

Even after the behavior of a component is understood, the problem is not solved. Often
there are great gains that can be made by adjusting some of the other parameters available
in the system. One of these parameters is the processing technique used to manufacture the
part being designed. Depending on the process used to create the part there may be many
parameters available to adjust the final properties of the material. The ability to use these




processing parameters in design depends on being able to properly model their effects on
the resulting material. To this end modeling capabilities are being developed for material
processing and being integrated into an overall system for composite design.

This paper describes a system that is being developed to assist in designing with compos-
ite materials. The purpose of the system is to give the user a set of adaptive tools for the
analysis of structures made from composites as well as tools to investigate processes used
to create the materials and to determine their properties.

ANALYSIS FRAMEWORK
System Overview

The system can be broken down in four functional parts which work together to solve the
overall problem of designing with composites. Each of these parts is comprised of pro-
grams which perform specific tasks. The system is designed so that any functionally
equivalent part can be substituted for another without affecting other parts of the system.

Design: The first part of the system is the user interface to the system; it is the only part

that the user directly interacts with in a design process. Two things can currently be done

at this level: 1) problem specification, specifying the problem to be analyzed in terms of a

geometric model, analysis attributes and the goals of the analysis, and 2) material design

and selection, investigating properties of various material systems as a part of problem
- specification or as a stand-alone task.

Material Property/Response Calculations: The second part-of the system is a set of
tools to provide material response characteristics and homogenized material properties for
various types of microstructures. Specific current capabilities include material models
such as Bimodal Plasticity [1], PHA [2], and a general unit cell evaluation program. These
tools are also available to other parts of the system for the same purpose.

Thermomechanical Analysis: The system also has tools for performing adaptive thermo-
mechanical analysis, that is to provide accurate and efficient solutions for displacements,
stresses, strains, temperatures and heat fluxes for the purpose of determining structural
response and predicting failure. The specific codes that are available in this part of the sys-
tem include commercial FE packages, such as ABAQUS [3], and in-house codes, such as
the Mesh Superposition Research Code which implements the s-version FEM.

Process Modeling: The fourth functional part of the system are tools to simulate material
processing. This part of the system allows the designer to investigate alternate processing
procedures to increase the efficiency of the material processing and to obtain more
detailed initial material properties for a thermomechanical analysis of a structure. One
piece of software that is being developed models a reactive vapor infiltration process.

Goal Driven Methodology

One method by which the system allows its users to get the full benefit of the various com-
ponent tools is through the use of a goal driven methodology to assist in the solution of the
problems to be analyzed. A main objective of the goal driven methodology is to provide




analysis expertise for use in design, in a manner which is as simple as possible to use. This
is done by separating the objectives of the analysis: the goal, from the details of how it can
be accomplished: the strategy.

Creation of analysis goals is primarily the responsibility of the composites designer, con-
sisting of the definition of what is “known” or fixed, what is desired, and the allowable
cost and required reliability of the analysis. Strategies are developed by analysis experts
and software developers. Once an analysis goal has been specified in the system, a strategy
can be automatically selected and executed to achieve it. A strategy consists of modules of
software which can accomplish specific parts of an analysis goal, and a plan which pro-
vides expert guidance for implementing the analysis. During execution, inferencing details
the plan by matching particular conditions of the problem with known capabilities of the
methods and software modules available to the strategy.

As an example, a composite material application may have known reinforcement shape
and composition and unknown instantaneous effective properties such as compliance,
stiffness, thermal strain and stress vectors, mechanical and thermal concentration factors
or bounds on the effective moduli. The analysis goal specifies the knowns, the desired
data, plus the desired reliability of the results and the time (cost) available. A strategy plan
for reaching the unknowns states that a model, e.g. PHA, random fibers in a unit cell, sim-
ple bounds, modified SCM/TFA etc., an analysis method, e.g. finite element or transfor-
mation field analysis, and a constitutive model must be determined. The details of which
method and modules of software are used, and the order in which they must be executed
are determined from the particular attributes of the goal and the known capabilities of the
methods and software.

Strategies can readily accommodate expanded analytical capabilities. For instance, as
material processing models and analytic techniques become more advanced, some of the
material knowns given above could be replaced with the initial materials and processing
technique parameters. The new analytical capability may then derive reinforcement shape
and composition properties, helping to integrate manufacturing of the composite with the
design process. The goal driven approach reduces the assumption as to how designers will
want to use the new analytical capability and requires no procedures to be written or
rewritten in order to accommodate those assumptions. Further details of the approach as
used for idealization control can be found in [4] and [S]. A related application focusing on
information dependency and planning for composite design can be found in [6].

MULTISCALE MODELING

One of the greatest challenges in computational mechanics is to construct optimal mathe-
matical and numerical models for large scale laminated shell structures. The challenge is
to accurately determine the global behavior of the shell structure, including maximum dis-
placements, vibration and buckling modes, as well as predicting various failure modes on
the lamina level, such as delamination or ply buckling, and on the level of microconstitu-
ents, such as microcracking, debonding, microbuckling, etc. To accomplish this, research
efforts have been directed in the following two areas:

* Development of idealization error estimators for laminated composite shell structures
to control the quality of both mathematical and numerical models




o Development of efficient multiscale adaptive solution refinement strategies aimed at
improving the quality of numerical and mathematical models

Idealization error estimators for composite shells

Dimensional Reduction Error estimator (DRE) developed in [7] is designed to indicate
areas where the equivalent single-layer model, the most inexpensive modeling tool, is
insufficient. The kinematics of the model can then be enriched in these areas with a dis-
crete-layer model to allow modeling of such failure modes as delamination. The error esti-
mator builds on the earlier works on residual based error estimators. By this technique the
dimensional reduction error ¢ = uZ% - u"¥ = @B, is approximated by a linear combination
of some basis in the auxiliary FE mesh. The unknown coefficients are found by solving the
auxiliary problem:

gg{%a(uFE+E, uFE+E)Q— (uFE+E, byg- (uFE+E! Hr} =0 (1)
where @ is defined to maintain C° continuity of the augmented field, u"E + E, and to sat-
isfy essential boundary conditions. The auxiliary mesh is constructed by uniformly subdi-
viding each layer into 2V5D self-similar subregions.

In many cases the mechanism that causes failure is at a much smaller scale - the scale of
microconstituents. A common computational rationale today is to investigate various
microprocesses that may lead to a progressive failure on the unit cell problem, based on a
periodicity assumption. This assumption is not valid in areas of high stress concentration.
Thus the application of conventional homogenization techniques to the “hot spots” leads
to poor predictions of local fields. A closed form expression for a Microscale Reduction
error estimator (MRE) has been derived in [8]. The proposed MRE estimator relates the
homogenization error to macroscopic fields and the details of microstructure as follows:

1€, =Cl a(a=1) IV €llg

Cc

Homogenization Error = X
)} off 2 ellg

@

where C, and C, are compliances of microconstituents, C, . the effective compliance of
the unit cell, o the volume fraction, X the size of the unit cell, | V €°|| ; the energy norm
of the gradient of the macroscopic strain field in the homogenized FE mesh.

It can be seen that the error estimator is asymptotically exact in the sense that the micros-
cale reduction errors vanish if either the normalized strain gradients are negligible, the unit
cell is infinitesimally small, the compliances of microconstituents are almost identical or
the volume fraction is close to zero or one, which corresponds to a homogeneous material.
The formulation of microscale reduction error estimator is based on assessing the magni-
tude of the first term neglected by a classical mathematical homogenization theory [8].

Adaptive refinement strategy

Once the sources of errors have been quantified, it is necessary to employ the most effi-
cient solution refinement strategy. Our experience indicates that a solution strategy that
exploits previous solutions and computations, such as formation and factorization of the




stiffness matrix of the lower level idealization model is likely to provide the best accuracy
with a minimal computational effort. Such a hierarchical solution procedure can be
obtained by superposition of finite element meshes. This procedure, known as the s-
method [7][9] has the following features:

1. Overlay a discrete layer model on the equivalent single layer model in the critical
regions (in-plane and through-thickness) as identified by DRE estimators

2. Overlay finite element meshes that represent the microstructure in the regions where
the homogenization procedure has been identified by MRE estimator as being invalid.

3. Refine a given mathematical model (or idealization) composed of overlapping single-
layer, discrete-layer and the micro finite element meshes by overlaying refined finite
element meshes of the same kind in the corresponding regions until the discretization
error is smaller than a user prescribed limit.

EXAMPLES
Multiscale Modeling using the Mesh Superposition Method

To demonstrate the performance of the method consider a single layer (2x3”) Boron-Alu-
minium composite plate with a centered hole (diameter 0.2”) subjected to uniform load-
ing. The MRE estimator indicated that in the radius of four unit cells from the tip of the
hole the homogenization error was above 2%. In this region, as indicated in lower-middle
portion of Figure 1, a micro mesh was superimposed which accurately represents the geo-
metrical features of the microconstituents. Figure 1 shows stresses extracted from the
superposition method, reference solution and the post-processing from the mathematical
homogenization formulation. Note that, in the figure, the solution shown for the homoge-
nization formulation spans only the single unit cell closest to the hole, while the other two
solutions span a distance of five unit cells. The solution from homogenization does not
capture the details of the stress field, while the superposition solution shows a good corre-
spondence to the reference solution. Near the hole, the superposition method yields a max-
imum stress value of 5.75, while the reference solution yields 5.6 and the post-processing
from homogenization, 4.0. This examples clearly demonstrates how the method of mathe-
matical homogenization fails in areas of high solution gradients due to the fact that one of
the assumptions of the method is that the gradients are small. It is, of course, these areas of
high gradients that are most important to resolve.

Failure Surface Visualization

In the process of developing new materials and new processing methods, it is often desir-
able for the material designer to have an understanding of the behavior of a material on the
microscale level. One way to look at the behavior is by using various models that predict
some type of overall behavior based on the microstructure and the thermomechanical
loading of the composite, such as the evolution of yield or failure surfaces.

To allow this type of information to be investigated in a natural manner a tool was devel-
oped to visualize yield and failure surfaces for composite laminates based on any theory
which has a lamina-based yield or failure criteria[11]. These surfaces can be shown for
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FIGURE 2. Failure Surfaces for a SCS6/Ti-24Al-11Nb (+45°) , lJaminate

individual laminas in a laminate or combined to show the surface for the entire laminate.
Two different failure/yield theories have been implemented: the Bimodal Plasticity theory
[1] and a modified Mori-Tanaka approximation [12].

Figure 2 shows an example of the failure surfaces for each layer of an SCS6/Ti-24Al-
1INb (£45°) laminate. The different surfaces indicate the stresses required to initiate
various failure modes for each layer of the composite, each of the surfaces is colored to
indicate the failure mode to which it corresponds. The inner envelope of these surfaces
gives the initial failure envelope for the laminate. The external loading and applied tem-
perature can be interactively changed and the failure surfaces are automatically updated.
The tool was implemented using IBM Visualization Data Explorer [10] for the user inter-
face and general visualization capabilities.
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Automated Multiple Scale Fracture Analysis

Mark W. Beall, Vladimir Belsky, Jacob Fish, Mark S. Shephard
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Abstract. This paper discusses a system for automated analysis of crack propagation in
heterogeneous materials. The system uses a multiscale analysis technique to account for
the effect of the microstructure on the propagation of the crack. The multiscale analysis
allows the microstructure of the composite to be explicitly represented in the vicinity of
the crack front while using homogenized material properties elsewhere. Procedures for
automatic construction and update of the models é.nd meshes used in the analysis are

described.

1 Introduction

The continued improvement in the price-performance of high performance workstations,
and the parallel computers which build upon them, is having a dramatic impact on the
ability to solve more complex physical problems. However, to take full advantage of these
hardware speed improvements, advances in computational methodologies are required.
One advance negded is to effectively employ the power of parallel processing. Although,
this will increase the problem size possible, it does not address issues associated with (i)
the need for a more detailed accounting of the physics of the problem, (ii) ensuring the
reliability of the computation, or (iii) removing the labor intensive aspects of generating
the numerical analysis discretizations. This paper conside-s the problem of discrete frac-

ture simulation in heterogeneous three-dimensional structures and presents a set of com-




putationally efficient procedures which can automatically provide a reliable solution to

these problems, while explicitly accounting for behavior at two physical scales.

To understand the failure of heterogeneous materials systems, such as reinforced concrete
and structural composites, it is necessary to understand the interactions and failure of the
individual constituents of the system as driven by the local stress and strain fields. The
determination local fields are dictated by the behavior of the entire structure. However, it
is not feasible to analyze the entire structure explicitly representing the constituents
throughout the domain. This problem can be addressed by the application of multiple
scale analysis methodologies which correctly combine overall models (macromechanical)
for the majority of the domain with local models (micromechanical) in critical regions.
The reliable application of multiple scale technicjues requires mathematically sound meth-
odologies to transfer information between the two physical scales and the ability to adap-
tively determine those portions of the domain where the local models are needed.
Section 2 discusse§ the techniques used to perform and adaptively control multiple scale

analyses.

Even with the ability to effectively employ multiple scale representations, the resulting
discrete systems are very large and must be solved with appropriate equation solving tech-
nologies. As also indicated in Section 2, iterative equation solvers based on multigrid

techniques can take direct advantage of multiple scale representations.

The failure processes considered in this paper are governed by the propagation of discrete
cracks at the micromechanical level. The simulation of discrete crack growth requires cri-

teria to indicate under what conditions a crack will propagate, in which direction it will




propagate, and how far it will propagate. Section 3 discusses the criteria used in the
present work for crack propagation and discusses issues associated with the effective

numerical implementation of these processes.

A final key to an effective multiple scale fracture’sirnulation is the ability to generate and
control the required models and meshes. Since any need for human intervention would
introduce an expensive bottleneck, all model update and mesh generation processes must
be automated. Sections 4 and 5 describe the techniques and procedures developed to sup-
port the generation of local models and meshes from a geometric model of the ovefall
domain and a description of the microstructure. Since the geometry evolves as the crack
propagates, both the models and the meshes must be updated to account for the propaga-

tion of the crack using the procedures discussed in Section 6.

It is worth noting that the entire set of procedures described in this paper employ method-
ologies consistent with those used in a set of parallel automated adaptive finite element
procedures (Shephard et. al. 1995, de Cougny et. al. 1995) developed to take full advan-

tage of scalable distributed memory parallel computers.

Section 7 demonstrates the application of the procedures described to crack growth in a
unidirectional composite material. A comparison is made between the crack growth pre-

dicted with and without explicit consideration of the effect of the microstructure.

2 Adaptive Multiscale Computational Techniques for
Heterogeneous Media

In analyzing large scale structures made of heterogeneous materials it is common in prac-

tice to carry out at least three distinct levels of analysis corresponding to different length

3




scales: (i) macroscale (structural level), (ii) mesoscale (component level), and (ii) micros-
cale (the level of material heterogeneity). On the structural level, structural components
are treated discretely, while individual components are idealized to adequately determine
their overall properties. On the component level, individual subcomponents are treated
discretely, while microconstituents are treated collectively as a homogenized medium
where homogenized material properties can be determined experimentally, or predicted
from micromechanics. For micromechanical analysis individual phases are treated dis-

cretely, while lower scales such as material grains or atoms are treated as homogeneous.

These steps comprise a sequence of interdependent analyses in the sense that the output
from one level is used as input to the next level, using constitutive laws to serve as the
bridging mechanisms between the scales. It is important to note that any level of analysis
is performed totally independent of the others if the required input data is available, per-
haps from experiment. There is no doubt that this approach reflects a necessary compro-
mise aimed at bridging the length scales in excess of several orders of magnitude in time
and space. The obvious question arises as to the validity limits of such a step-by-step pro-
cedure. Is there a need for a coupled approach that will simultaneously consider phenom-
ena at several different scales, and if the answer is positive, is the current status of software,

and hardware tools mature enough for such coupled multiscale considerations?

Let’s start by addressing the first issue. Figure 1 depicts the shear stress distribution in the
axial tension problem in a (90/04/90), laminate (Fish and Belsky 1994). Results are shown
for one quarter of the plate cross section in the x-y plane. The lines of symmetry are at the
bottom and on the right hand side of the cross section. The unifo.rm tension load is applied

normal to the x-y plane. The zoomed area of shear stress distribution in the close vicinity




to the free edge is also shown. Results of the classical step-by-step procedure based on the
homogenization theory are compared to the reference solution where the size of finite ele-
ments is of the same order of magnitude as that of material heterogeneity. It can be seen
that a classical step-by-step procedure predicts accurate shear stress distribution except for
the close vicinity to the free edge, where it significantly underestimates maximum stress
valugs, and along the entire interface between the two dissimilar layers. The reference
solution shows oscillatory shear stresses along the entire interface, while the solution
based on the classical step-by-step approach shows no such stress concentration. The mag-
nitude of these oscillatory shear stresses is roughly 1/3 of the maximum shear stresses
developed at the interface, but even so, these interface shear stresses may significantly

affect the propagation of cracks emanating from the free edge.

Recent theoretical and numerical studies (Fish and Wagiman 1993, Fish and Markolefas
1994) have shown that in the areas of high gradients, primarily developed in the boundary
layers at free edges and interfaces, the classical uncoupled step-by-step procedure may
lead to poor prgdictions of local fields, since it assumes uniformity of macroscopic fields

over the unit cell domain.

Simulation of the evolution of failure processes in heterogeneous media pdses an even
greater obstacle to the classical step-by-step approach. Sometimes the failure is cata-
strophic, and the ability to compute only the onset of failure is sufficient. Although com-
puting the onset of failure is still a very difficult task, particularly in heterogeneous media, .
it is a goal that has largely been accomplished by means of a classical uncoupled step-by-
step approach. However, in determining the vulnerability or survivability of a structure, a

computation beyond the onset of failure is critical because there may be a considerable




e

bkt v

Multigrid Soluhon for axlal fension problem

Lt e liali s g

TR T T T T TR o TR YY

NRNE RERNTE

b Mulhgnd Mlcro Soluhon

""“'}‘“‘J"‘].{r ’



reserve strength. Reliable simulations of failure processes in heterogeneous media ema-
nating from the smallest scale. such as microvoid nucleation and followed by their coales-
cence and structural failure, require revitalization of classical bridging mechanisms

between various modeling levels.

It is now feasible to use more sophisticated mathematical models and more refined dis-
crete models, which account for close interaction between different scales. However, it is
appropriate to recall the statement made by Einstein, "The model used should be the sim-
plest one possible, but not simpler." Adaptive multiscale modeling techniques enable the
analyst to start from a simpler model and then adaptively refine both the mathematical and
numerical models to permit coupled multiscale considerations, whenever and wherever

needed, until the simplest possible model that provides an accurate solution is obtained.

To address the question regarding the maturity of existing hardware and software tools
needed for such multiscale holistic considerations, Figure 2 demonstrates the application
of this approach to analyzing a typical composite structure. The adaptive multiscale strat-
egy starts by employing classical discretization error indicators (Zienkiewicz and Zhu
1992, Oden et. al. 1989) and adaptively refining the finite element mesh on the macrome-
chanical (shell) level to ensure accurate macro-solutions. Subsequently, dimensional
reduction error indicators (Fish et. al. 1994) identify the areas where the most critical
interlaminar behavior takes place, and consequently, a more sophisticated discrete layer
model is placed there. Fast iterative solvers based on the multigrid technology with special
inter-scale connection operators (Fish and Belsky 1995a,b) are used to solve a coupled
two-scale macro-meso model. Once the phenomena of interest on the macro-meso levels

have been accurately resolved, microscale reduction error indicators (Fish et. al., 1994) are




used to identify the location of critical microprocesses and consequently, a micro-mesh is
placed there. The three-scale coupled macro-meso-micro model is again solved using a
three-scale multigrid process (Fish and Belsky 1995a,b). In this methodology; discretiza-
tion error indicators and adaptive refinement strategy are employed simultaneously at

three different scales to ensure reliable multiscale simulations.

The three-scale model described in Figure 2 contains over 1,000,000 degrees-of-freedom.
The estimated CPU time for solving it with a conventional direct solver based on skyline
storage is over 705 hours on a single processor SPARCstation 10, which essentially makes
the model intractable. With a special purpose multigrid technology for heterogeneous
media, developed iﬁ (Fish and Belsky 1995a.b), the same problem has been solved in less
_than 16 hours on a single processor SPARCstation 10, turning it into a practical overnight

job.

The derivation of the inter-scale transfer operators for the three-scale multigrid method is
based on the asymptotic solution expansion, which assumes infinitesimality of the unit
cell. The asymptotic forms of the prolongation and restriction operators are obtained by
discretizing the corresponding asymptotic expansions. For unit‘ cells of a finite size, the
regularization function has been introduced to obtain well-behaved inter-scale transfer
operators, terrne.d as khomogenization based operators. The resulting homogenization

based prolongation operator is given by:

0 = Q+dOCVN(X,) (1
where Q is the standard multigrid linear prolongation operator, d is the unit cell solution,

V.N(X g is the symmetric gradient of the shape functions in the auxiliary grid evaluated
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at the Gauss points in the auxiliary mesh, C is the projection operator aimed at maintain-
ing C,, continuity of the displacement field on the micro-scale. For a technical description

of these operators see (Fish and Belsky 1995b).

The rate of convergence of the multigrid process for heterogeneous media has been stud-
ied in (Fish and Belsky 1995a,b). It has been proved that for periodic 1-D heterogeneous
media problems, the rate of convergence of the two-grid method with special inter-scale

transfer operators is given by:

q

1 = 05d, +dy) @

] = 7l f1i

where d; represent the stiffnesses of microconstituents. Note that if the material is homo-

geneous and the mesh is uniform (d; = d,) a classical two-grid estimate is recovered:

le+Y = é“ei" Otherwise g < 1 resulting in ¢’ * ] < %"ei" : )

Note that if the stiffness of a fiber is significantly higher than that of a matrix, i.e. d; » d,,
then the multigrid method converges in a single iteration. In multidimensions, conver-
gence of the multigrid process for periodic heterogeneous media has been studied (Fish
and Belsky 1995b). It has been found that convergence trend characteristics found in the
1-D cases are closely followed in multidimensions. In practice, for fiber/matrix stiffness
ratios, d,/d,, of approximately ten, 4 to 6 multigrid cycles are sufficient to obtain con-

verged results.
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3 Crack propagation procedures

There are two cornmon‘approaches taken in the development of crack propagation proce-
dures. The ‘global’ approach assumes that crack extension takes place in an idealized
anisotropic homogeneous material with gross combined properties of the constituents. The
‘local’ point of view, often referred to as micromechanical approach, considers material as
heterogeneous. The ‘local’ approach takes into consideration local damage patterns. In the
present study we adopt a global-local approach by which ‘local’ description is used in the

vicinity of the crack front while elsewhere the medium is treated as homogenized.

Crack growth simulations, in general, are difficult to perform because of the need for con-
tinual geometry and computational mesh updates. This process becomes even more chal-
- lenging for problems in heterogeneous media where in addition to the geometry and mesh,

the mathematical mode! has to be updated.

The crack propagation increment x, — X, is defined in terms its shape {S' Ata=1 and

amplitude o

x, = X,+0aS, - @
where X, x, denote position of the finite element node A located at the crack front inter-
face before and after incremental update, respectively, and n is the number of nodes on the
crack front interface. Prediction of crack trajectory requires determination of {§ A4 =1

and ¢.

No generally accepted criterion exists for predicting trajectories of cracks in three-dimen-
sional heterogeneous media. Among the popular phenomenological theories for predicting

instantaneous angle of crack propagation in two-dimensional homogeneous media are
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maximum tangential stress criterion, maximum energy release criterion and minimum
strain energy density criterion. Two major obstacles in applying these criteria to three
dimensional applications in heterogeneous media with arbitrary crack surfaces are sum-

marized below:

1. Crack growth depends on the geometry, boundary conditions and material characteris-

tics of microconstituents, including strength and fracture toughness.

2. Asymptotic fields are generally not known in these cases.

To overcome these difficulties we propose the following generalization of the classical

crack propagation criteria:

1. The preliminary crack propagation shape {.§ A}4 = is defined on the basis of the fol-

lowing normalized criteria:

F
A
1541 = & )
A
- GA
where | | denotes Euclidean norm of a vector, F, is either maximum energy release
rate, maximum tangential stress, or minimal strain energy density. G, is either fracture

toughness, strength in tension or critical energy density, respectively.

2. The unit vector e, = S,/|S,| defining the crack propagation direction at node A
points in the direction of the maximum ratio F,/G, (among the elements connected

to node A) projected onto the plane normal to the crack tip interface at node A.

3. Deformation and stress fields are either directly extracted from the finite element analy-
sis or by postprocessing finite element solution (Niu and Shephard 1993, Niu and Shep-

hard 1994).




4. Smoothing is applied to the crack propagation shape as obtained from equation (5) to

avoid numerically defined oscillations.

The process of finding the smoothed crack propagation shape can be viewed as con-

strained optimization problem, which states:

Find the smoothed crack propagation shape increment, ”§ A" , such that

REAE 184)%aL = min | ©)

subjected to the smoothness constraint:

. N2
J'L (%Ils A||) dL <¢* - ™

where L is a coordinate along the crack tip, and € is the smoothness parameter. Solution

of the .constrained optimization problem yields the following differential equation:

%)
(z-ya-L-z-)usAu ey ®

subjected to periodic boundary condition. Note that the parameter ¥ « 1 is defined by the

user. Equation (8) can be solved using finite element method using bi-linear discretization

of "SA" .

Due to the history dependence of crack growth, the problem of evaluating the amplitude o
can be stated in terms of an ordinary delay differential equation (Fish and Nath, 1993): .
dx 4

o - Sa(o) ©




The special nature of ordinary delay differential equations has the effect of making the
crack path smoother with evolution in ‘time’ if the evolution of the right hand side vector
in (9) is smooth. For problems in heterogeneous media G, , and thus S’ A, are C—1 contin-
uous functions in o and thus the optimal integrator for such a differential equation should
be based on a type of integration scheme which does not rely on the smoothness of the
crack path. The simplest form of such integrator is based on a predictor-corrector scheme:

Predictor X, =X, '*'S(XA)'OC
(10)

Corrector X, XA+%(.§(XA)+.§(J?A))OL

The normalized local truncation error, B, is given as:

2 ~ ~ 2

-X,) S(x,)-SX

- fi (x4 xA)2 _ 2 (~(xA) ~( A))2 an
a=1X4—Xy) a=1(8(x,)+S(X,))

The crack propagation amplitude may increase or decrease to keep the magnitude of the

normalized truncation error, 3, below the user prescribed tolerance.

4 Problem Definition to Support Automated Model
Construction

The effective application of multiple scale analysis requires automation of the entire pro-
cess. Without au-tomation the analysis is effectively impossible due to the time and effort
required to updat;a the models and meshes needed as the analysis progresses. The automa-
tion of a set of engineering analyses requires all analysis models, and their discretizations,
be derived from a single problem definition. The two key components of the problem def-

inition are the domain description (the geometric model), and the analysis attributes
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defined in terms of it. For sake of discussion, this single problem definition, from which all

other models are derived, is referred to as the primary problem definition.

4.1 Geometric Model |

The geometric models constructed from the primary problem definition in support of mul-
tiscale analyses vary from a representation of the middle surface of a composite structure,
to one containing multiple volumes representing the micromechanical structure of a com-
posite material. The representations used must be able to support the requirements of auto-
mated discretization constructibn procedures (Shephard and'Finnigan 1989, Shephard and
Georges 1991). The primary model must be structured such that the various idealized
engineering analysis models -can be automatically constructed, and the interactions
between those models controlled. For example, at the highest level, a composite structure
is idealized as a surface (a shell model), while at a portion is represented as a multi-layer
volume, and in a local region the microstructural components are represented as volume
elements. The relation of all of these models to each other must be understood by the anal-

ysis, this done by relating all of them back to the primary problem definition.

The model construction and discretization processes can be effectively supported by geo-
metric modeling systems supporting non-manifold representations of general combina-
tions of volumes; surfaces and curves (Weiler 1988). In addition to taking direct advantage
of the massive development effort required to produce such geometric modelers, this
approach can properly support all the geometry needs of automatic mesh generation

(Shephard and Georges 1992).




The approach of defining the primary geometric model as a detailed geometric representa-
tion at the lowest physical scale is not advantageous for several reasons, including: (i) the
model sizes would be unacceptably large, (ii) the automatic construction of the higher
level models can be more complicated than the automatic construction of low level mod-
els, and (iii) user effort to construct detailed lower level models would be burdensome to
the design process. The approach taken here is to store an overall geometric representation
supplemented with the additional geometric feature data required to automatically con-
struct needed idealized geometric models. Usually this means that a simple, engineering-
type geometric model is used to describe the structure and attributes are used to describe
the details required for the analysis, such as the material microstructure. This approach
also corresponds well to the design process, where different portions of a structure will be

understood to different levels of detail at various times.

The most geometrically demanding processes involve the construction of the idealized
geometric models for specific analyses from the primary geometric model. One class of
such operatidns are dimensional reductions where, for example, the middle surface of a
complex three-dimensional solid, which is thin in some through-the-thickness, direction is
needed for an analysis. Another example is constructing a multi-material solid model of a
representative unit cell from basic composite specifications when micromechanical mod-
els are included in the analysis process. The approach used to address these needs is to
employ the geometric construction functionality of commercial solid modelers, driven by
appropriate kndwledge housed in the primary model and the analysis strategy being exe-
cuted. Figure 3a shows the a unit cell for a composite weave auiornatically constructed in

the Parasolid non-manifold solid modeler (Parasolid 1994) using the basic manufacturing
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parameters defining the weave and the procedures described in Section 5. The automati-

cally generated mesh of this model is shown in Figure 3b.

(a) Geometric model of woven composite (b) Mesh of woven composite
FIGURE 3. Automatically constructed and meshed unit cell model

4.2 Analysis and Idealization Attributes

Analysis attributes consist of the information past the geometric model needed to specify
an analysis model. Analysis attributes include material property, boundary condition, load,
and initial condition information. Idealization attributes define the information needed to
convert a primary model to the idealized model used in an analysis process. Examples of
idealization information are specification of the use of the middle surface for an overall
deformation analysis, and the information defining the microstructure of a unit cell. To
support an automated énvironment, the analysis and idealization attributes must be defined
directly in terms of the physical parameters and associated directly with the geometric rep-
resentation of the primary geometric model (Shephard 1988, Wong 1994). When defined
in this manner they can be properly transferred to the idealized analysis models and their

discretizations.




The physical description of all analysis attributes are in terms of tensorial quantities. The
components of the structure used to define the attributes’ phyéical information include (i)
the order of the tensor, (ii) an indication of the coordinate system the tensor is defined in,
(iii) the symmetries possesse'd by the tensor, and (iv) the distribution information defining

each component of the tensor in the given coordinate system.

Since a number of basic attributes, such as material parameters, are likely to be used in
multiple analyses, it is advantageous to allow the single specification of an attribute and to
collect the attributes appropriate for an analysis into the specific analysis case desired. A
hierarchical organization structure that allows the convenient collection of attributes,

including the application of multipliers has been put into place.

 Finally, attributes must be associated with the entities in the geometric description of the
domain. Complications are introduced in the case of multiple scale analyses since it is
necessary properly transfer the appropriate attribute information from the primary
attribute definition to the idealized analysis models. The transfer of the attributes must cor-
rectly deal with such processes as dimensional reductions and replacement of a set of het-

erogeneous constituents with a homogeneous continuum.

5 Automatic Generation of Models and Meshes for Multiscale
Analysis |

The multiscale analysis used here treats the problem being solved as a three level problem.
The top level is the component (macro) level, where all the material properties are consid-
ered to be homogenized. The bottom level is the microstructurai level where all the details

of the microstructure, and damage that is occurring to the microstructure, are represented.
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The middle level serves as a transition between these two level and incorporates any

macro level damage.

For the discrete crack propagation problem discussed here primary problem definition
consists of a solid geometric model of the physical structure being analyzed (the macro
model) with appropriate analysis attributes and idealization attributes that describe the
layup and microstructure of the composite. These attributes include the type of micro-
structure, the parameters needed to build a unit cell, the material properties of the constit-
uents and the orientation of the unit cell with respect to the macro model. The models that
represent the lower levels of the analysis are constructed using the information in this

problem definition. The initial crack geometry is also specified in the primary problem

definition.

5.1 Unit Cell Construction

The primary model definition includes a definition of the unit cell that describes the micro-
structure. This definition is in terms of the parameters that define the unit cell (such as vol-
ume fraction and fiber diameter for a continuous fiber composite). The geometric model of

the unit cell is created by the system when needed.

Currently, the microstructure geometry is assumed to be periodic which allows it to be
represented by the repetition of a single unit cell. This unit cell is used for the calculation
of homogenized material properties using standard homogenization procedures (Bakh-
valov and Panasenko 1989, Guedes and Kikuchi 1991) and for construction of the micros-
cale model of the composite. Both the model and the mesh' of the unit cell must be

periodic.
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Periodic Fibers Woven Elliptical Fibers
FIGURE 4. A sample of the various types of unit cells that can be created.

Common composite unit cells are: aligned fibers, random chopped fibers, random parti-
cles, and woven fibers (Figu_re 4). The unit cells fall into two categories: those with pre-
scribed structure and those with random structure. The unit cells with prescribed structure,
such as the aligned fiber and the woven fiber cells in Figure 4, are created from a paramet-
ric model of the unit cell. The parameters in the model include fiber size, volume fraction,
and other geometric properties of the unit cell. The unit cells with random structure, such
as chopped fibers and particles, are generated using a stochastic procedure that randornly
inserts appropriate reinforcements into the unit cell while enforcing the periodicity

requirement (Shephard et. al. 1995b).




5.2 Microscale Model

The domain of the micro model is the set of unit cells that encompass the critical areas of
the model where it is necessary to resolve local fields. For the crack propagation problem
this area is the unit cells that enclose the crack front. The steps to find this domain for the

crack propagation problem are:

o

N

/ y,
—

(a) Macro model with crack location indicated {(b) unit cell grid overlaid on model

\\/r

{c) domain of micro model found (d) micro model created
FIGURE 3. Defining the domain of the micro model.

1. Given the overall model (Figure 5a) a regular grid is defined over the portion of the
macro model that encompasses the required microscale domain. Each grid cell is one

unit cell in size (illustrated in Figure 5b with the third dimension removed for clarity).
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This grid must be defined to be aligned with the microstructure such that when the unit
cells are inserted in the grid cells. the correct microstructure is created. The grid is only

“defined”, it is not actually created in the geometric modeler.

2. The grid cells containing the crack front, the minimal domain for the micro model, are
determined as follows: Pick a point on the curve defining the crack front and determine
which cell the point is in. Add this cell to the list of cells that the crack front passes
through. Find which cell face, edge or vertex the curve passes through as it exits the cell
by intersecting the curve with the planes defined by each cell face of the current cell.
Add the cell on the opposite side of the face to the list of cells that the crack front passes
through. If the crack front passes through an edge or vertex then add all the cells touch-
ing that edge or vertex. Continue this procedure, tracking the curve as it passes from
one cell to another until the entire curve has been traversed. This is illustrated by the

light grey filled cells in Figure 5c.

3. This minimal domain is extended by adding n layers of cells surrounding the minimal
cells to the model (Figure 5c shows one layer of these cells added, shaded dark grey)
giving the domain of the micro model. The number of additional layers depends on how
far the crack will be allowed to advance in a single analysis step. The crack front must

always remain with the micro model.

Once the domain of the micro model has been determined, the actual model can be con-
structed. For each cell in the grid that has been determined to be in the domain of the
micro model, the model of the unit cell is duplicated, translated and rotated so that it corre-
sponds to the position and orientation of that grid cell. The boundaries of adjacent unit cell

are then sewn together to make a single model. This model, when unioned with the portion
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of the crack model that is interior to the unit cells. makes up the microscale model. Mate-
rial property attributes are then associated with the entities in the micro model by copying
them from the corresponding entities in the unit cell model. The result of this process for a

delamination problem is shown in Figure 6.

FIGURE 6. Microscale model of delamination crack

To support the analysis procedures. the mesh on the micro model boundary must be identi-
cal to that which is on the boundary of the unit cell that was used to calculate the homoge-
nized material properties. The mesh on the interior of the model has no restrictions. This
requirement is enforced by copying the mesh from the boundary of the unit cell to all the
faces on the boundary of the model. then meshing the other (interior) faces of the model
using the Finite Octree mesh generator (Sheéhard and Georges 1991). Finally the interior
of the model is meshed using an element removal procedure that works from the given

boundary mesh.




5.3 Transition Model

The transition model is used to connect the macro model, with its coarse mesh and
homogenized material properties, and the micro model, with its fine mesh and explicit
microstructure. The outer boundary of the transition model is the boundary of the union of
all the elements in the macro mesh that the micro model is interior to (Figure 7). (In addi-
tion some elements that the micro model is very close to may be added). Imbedded in the
vinterior of the transition model are a set of non-manifold faces (faces with model regions
on both sides) that represent the outer boundary of the micro model and the portion of the
crack face that is external to the micro model (Figure 7c). The portion of the crack internal
to the micro model does not need to be represented, but it can be, and is in the examples
shown here (whether or not this part of the crack is represented is irrelevant since the
micro model represents the correct geometry in that portion of the domain). The transition

model created for the delamination crack in Figure 6 is shown in Figure 8.

(a) Macro-mesh (b) micro-boundary superimposed over
macro-mesh

FIGURE 7. Construction of the transition model




Crack Front Boundary of macro
mesh elements
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Boundary of unit cells
in micro model
(c) elements intersecting micro modei (d) outer boundary of elements found and
found interior structure inserted.

FIGURE 7. Construction of the transition model

FIGURE 8. Transition model

The mesh for the transition mode{ does not need to be compatible with the mesh of the
macro model, however there should be no elements on the boundary of the transition mesh
that are in more than one macro mesh eiement face. This is ensured by constructing the
transition model so that the edges of the macro mesh are retained on the boundary (i.e. co-
planar faces on the boundary are not unioned to make a single face so the edges that define

the original faces are retained). Although compatibility of the mesh is not required, it is




desirable, from a convergence standpoint, to have the size of the elements in the transition
mesh roughly (within a factor of 3 to 5) the same size as the elements in the macro mesh
on its outer boundary and roughly the size of the elements in the micro mesh on that inte-

rior boundary.

6 Model and Mesh Updates for Crack Propagation

To simulate the growth of the crack for a step, the analysis must update the representation
of the crack to account for the growth predicted at the last step. This procesé can be made
efficient by performing local modifications to the models and meshes to reflect the growth
of the crack. This works well since the majority of the updates only change the representa-
tion at the micro level. As the crack grows, it eventually approaches the boundary of the
micro model, requiring the micro model domain and, thus, the transition model and mesh
to be updated. The updates of the higher level models only happen occasionally. An out-

line of the steps in the model update are as follows:
1. From the results of the analysis determine the updated geometry of the crack.
2. Update the crack representation in micro model and mesh to réﬂect the crack growth.

3. If the crack front nears the boundary of a unit cell, the micro and transition models are

updated as follows:

a. Add unit cells ahead of crack and remove them behind, to ensure that the micro-

model exists for the desired distance ahead of the crack front.

b. Update the transition model to reflect the new micro model domain.




6.1 Crack Update

FIGURE 9. Analysis results showing predicted crack growth.

As shown in Figure 9, the analysis provides the direction and magnitude of the crack
growth at each vertex on the crack front. This information is used to define the “crack
extension” which is the geometric representation of the new crack surface. To avoid plac-
ing unnecessary constraints on the growth of the crack the crack extension is defined inde-
pendently of the mesh. It is defined as a set of triangular faces. extending from the current

crack front to new locations for the vertices on the crack front given by the analysis

(Figure 10).

ows show direction
e/}xlré agnitude of

cracE‘g?owt

Analysis Results Crack Extension Defined

FIGURE 10. Definition of crack extension from analysis results
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To construct the crack extension, the direction and magnitude of growth from each node
on the crack front is added to the nodes current location and a new position is found. A tri-
angular mesh is then constructed that extends from the old crack front to these new loca-
tions. The triangulation procedure must account for crack front expansion or contraction

as illustrated in Figure 11, using the following procedure:

Let d;;be the distance between two adjacent vertices, i and j that will form the new crack

front. . is the maximum desired edge length on the crack front. o (ot>1) and B

X

(B< 1) are two constants that define a criteria to guide the triangulation process to

account for expansion and contraction.

Ifd;> ol then crack front is expansion must be accounted for by the introduction of

max’

new vertices on the front. A new vertex is introduced midway between those two vertices

and the mesh is created accordingly as shown in Figure 11a.

If d;; <Pl then the crack front contraction must be accounted for by coalescing the
two adjacent vertices into a single vertex as shown in Figure 11b. This procedure helps

prevent the crack from locally self intersecting as the crack front contracts.

For the examples shown later in this paper, [,,,. was selected to be equal to the maximum
amount of propagation of the crack for a given step. This was done to ensure well shaped
elements could be created around the propagating crack since the mesh currently created
around the new crack will use these faces as faces in the mesh (as described in the next

section). The other two parameters were selected as: o0 = 1.2 and § = 0.3, which can be

shown to maintain control of the element shapes.
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(a) Expanding crack front (b) Contracting crack front
FIGURE 11. Special cases for creating crack extension

6.2 Micro mesh update

The crack extension is taken as the geometric representation of the growth of the crack.
Since the crack extension intersects elements in the current mesh at places other than their
boundaries, a method is needed to update the mesh to make it conform to the crack exten-
si.on. Two approaches have been developed to allow this arbitrary crack growth: local
remeshing and mesh modification. Local remeshing deletes the portions of the mesh that
are intersected by the crack extension, and then creates a new mesh that reflects the pres-
ence of the new crack growth in this local area. Mesh modification uses the geometry
defined by the crack extension to split mesh entities in the existing mesh to reflect the
crack growth. Only the local remeshing procedure will be discussed in this paper, the

mesh modification will be described in detail in a later paper.
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The first step in growing the crack is to determine the interaction of the crack extension
with the existing mesh. For each face in the crack extension, the mesh regions it interacts

with are found as follows:
1. Get the mesh regions surrounding any mesh vertices on original crack front.

2. Intersect edges of extension face with faces of the regions, if intersection is found add

the region on the other side of the intersected face to the list regions to be checked.

3. Intersect the extension face with edges of the regions found in step 2, add any new

regions of the intersected edges and vertices to the list of regions to be checked.

4. Repeat 2 and 3 until no more regions are found.

This step is repeated for each face in the crack extension, resulting in a list of mesh regions

in the original mesh that the crack extension touches or passes through.

The next step is to delete all of the mesh regions that were found to interact with the crack
extension, creating a hole in the mesh into which the crack extension mesh is inserted.
One additional layer of mesh regions surrounding this hole in the mesh is then also
deleted, for two reasons. First, the mesh in front of the crack needs to be refined to allow a
good solution to be obtained. By removing this additional layer of mesh regions and refin-
ing the mesh on the boundary of the hole (by splitting mesh edges which are longer than a
certain length) this is easily accomplished. Second, the original hole in the mesh can be
extremely close to the crack extension, which can result in a poor mesh being created
when the hole is remeshed. By moving this boundary away from the crack extension é

much better mesh is obtained.
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After the hole has been cleared out in the existing mesh, the crack extension mesh is
inserted as shown in Figure 12. The hole is then meshed using a face-removal meshing

procedure.

FIGURE 12. Boundary of hole in mesh created for local remeshing procedure. Grey surface is the
crack extension

There are issues that arise in the local remeshing procedure when the growing crack inter-
sects a material boundary in the model (such as growing from th;e matrix into a fiber). One
consideration is whether or not such a situation can be detected. In the procedures
- described here the situation can be easily detected while the interaction of the crack exten-
sion with the micro mesh is found. This is done by checking the classification (relation of
the mesh entities to the model entities they are discretizations oﬁ of the mesh regions that

are found to interact with the crack extension. This classification information is stored as
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part of the data structure describing the mesh (Beall and Shephard 1995). Given the list of
the mesh regions that a crack extension face interacts with, if the classification of any
mesh region in the list differs from the others, then the crack extension face interacts with
a model boundary. Once this situation has been detected there are issues involving both the
analysis procedure and the mesh update procedure. Since the analysis does not take into
consideration that the crack may propagate from one material to another it may not be cor-
rect to update the model to reflect this occurrence. The local remeshing mesh update pro-
cedure described here requires does not handle the situation of propagating the crack
across material boundaries without modification. A more general mesh update procedure
has been developed that does handle this situation without having to consider special

cases. Both of these issues will be addressed further in a subsequent paper.

6.3 Micro and transition model update

Eventually, as the crack front moves though the micro model, the original selection of the
domain for the micro model will no longer be optimal for the analysis for one of two rea-
sons. First, the crack front needs to be sufficiently far away from the boundary of the
micro model for the analysis to be accurate. When the crack approaches the boundary the
micro model will need to be extended. Second, there will be unit cells in the micro model
that are no longef close to the crack front. This makes the micro model larger than it needs
to be, reducing the efficiency of the analysis. These unit cells should be removed from the

micro model.

Modification of the domain of the micro model requires updating the transition model.

This is due to the change in the boundary of the micro model and also, possibly due to the

32




need to expand the transition model, by adding more elements from the macro mesh, due
to the changes of the micro model. The process of updating the transition model is illus-

trated in Figure 13.

(a) update crack representation in micro (b) if needed, update domain of micro
model model

New elements
from macro mesh
added

s

(c) updated local model and macro mesh (d) Updated transition model
FIGURE 13. Construction of the transition model.

When new unit cells are added to the micro model, they can be meshed using the mesh
that was created on the unit cell when the homogenization procedure was done. This is a
simple procedure since the mesh on the boundary of the micro-mesh is identical to the

mesh on the boundary of the unit cell.
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When unit cells are removed from the micro model. the domain of the transition model
cannot be reduced since all of the geometry of the crack must still be contained interior to
transition model. For these analyses this is done by only adding macro-mesh elements to
the domain of the transition model and never removing them as the crack grows. Thus,
although the micro mode! domain only surrounds the area immediately around the crack

tip, the transition model encompasses the entire crack.

Figure 14 shows the boundary of the micro model. before and after the crack grows. It can
be seen that after the crack growth there is a portion of the model near the center of the
crack where unit cells have been removed from the micro model since they are far from

the current crack front.

(a) Before crack growth. (b) After crack growth.
FIGURE 14. Boundary of micro model.

7 Results

The procedures described in the previous sections have been put together into a system for
analyzing the propagation of discrete cracks in heterogeneous media. The following two

analyses are an example of the difference in crack growth that is found comparing an anal-
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ysis using homogenized material properties to one using explicitly represented micro-

structure.

In both cases the problem being analyzed is an initially circular crack. The macro model is
a cube loaded in off axis tension at an angle of 45 degrees to the crack surface (Figure 15).
The material used is a unidirectional fiber reinforced composite. Both the fiber and matrix
are taken as isotropic with the fiber properties: E, = 50000, v, = 0.25 and the matrix
properties: E, = 10000, v,, = 0.25 . |

Initial A z, Fiber direction

Crac'k / // /,,

NAAAA
N

e

FIGURE 15. Test problem.

The first analysis was run using homogenized material properties, calculated from the unit
cell of the composite, throughout the problem domain. The second analysis uses explicit
microstructure in the vicinity of the crack front. The current capabilities of the system do
not allow the crack to propagate through the fibers so only the initial growth of the crack
can be analyzed (A new local mesh modification procedure, which is just nearing comple-

tion, will allow this. Results of that capability will be given in a future paper).

Figures 16 and 17 show the models that were automatically created by the analysis.

Figure 16a shows the transition model in relation to the macro model. Figure 16b shows
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(a) Macro model with embedded transition model  (b) Transition model with embedded micro model
FIGURE 16. Models created by the analysis
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FIGURE 17. Micro scale model with crack location indicated

the micro model in relation to the transition model. The micro model consists of four unit
cells. The initial crack is circular and located approximately a quarter of a fiber diameter
away from the nearest fiber as shown in Figure 18. The same micro model was used

throughout the analysis since the amount of crack growth was small.
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FIGURE 18. Crack growth shown in relation to composite microstructure

Figure 19 shows the crack growth predicted from the two analyses. The crack in the
homogeneous material is shown in the lighter grey and the crack for the heterogeneous

material is shown in dark grey. The closest fiber is on the right side of the view.

The analysis with the homogeneous material exhibits the expected behavior in this situa-
tion. The crack is growing so that it becomes perpendicular to the direction of the loading.
The final step shown in the results is right after the crack would have come in contact with

the fibers.

In the inhomogeneous case the crack exhibits more complicated behavior. It can be clearly
seen that the presence of the fibers is affecting the growth of the crack. As the crack is
approaching the fiber on the right side it bends away from the fiber and becomes more par-

allel to it.

8 Closing Remarks
The analysis syétem described in this paper builds on several important technologies.

First, a multigrid, multiscale solution technique that correctly accounts for the coupling
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FIGURE 19. Analysis results showing the difference in crack growth when accounting for the
microstructure. The light grey crack grew in a homogeneous material, the dark grey crack grew
with the microstructure explicitly represented.

between overall models with homogenized material properties and local models with

explicitly represented microstructure.

Second, automatic model and mesh generation procedures required to automate the com-
plex analysis process involving several evolving models and meshes. These procedures
operate from a common description of the analysis problem defined in terms of geometric

model and attributes.

All of the procedures described in this paper have been implemented in a manner consis-
tent with those used for parallel automated adaptive finite element analysis. Although the
current simulations are being run on single processor workstations, larger problems will

be able to take advantage of parallel processing.

Further development of the system is underway which will allow a microscopic flaw to be
propagated until it grows to the point where macroscale failure of the component occurs.
At this point analyses can be run to investigate the ultimate failure strength of components

in the presence of various types of initial flaws.
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SUMMARY

This paper provides an overview of an analysis framework which operates directly from a general
geometry-based specificaton. The framework is designed using object-oriented methodologies to allow for
sasy extension to analyze new problem classes and introduce additional adaptive control techniques.

INTRODUCTION

The numerical analysis of a physical problem can be se=n as a series of idealization steps. each of
which may introduce errors into the solution. The manner in which these errors can be understood and con-
trolled is through error sstimation and solution adaptivity. Since adaptive control should be applied to each
idealization step, the numerical analysis procedures must operate from the original problem definition
which is best described with respect to a geomerric model. This paper provides a brief overview of an anal-
ysis framework which operates directly off such geometry-based problem specificadons.

To increase the usefulness of the framework. it is designed for easy extension to include new analysis

capabilities and adaptive idealization control techniques. This extensibility is aided by the application of
object-oriented programming techniques. ‘

We can idendfy three levels of description that arise in the analysis of a physical problem (Figure 1).
~ The highest level description is that of the physical problem. The physical problem description is posed in

terms of physical objects interacting with their environment. Since we often want to estimate the response
through modeling we idealize the behavior in terms of a mathematical problem description. The mathemat-
ical problem description consists of a domain definition (geometry), a description of the external forces act-
ing on the object and the properties of the object (artributes), and, in the classes of physical problems
considered here, a set of appropriate partal differential equations which describe the behavior of interest.
Construction of a numerical problem from a mathematical problem involves another set of idealizations.

From a single mathematical problem it is possible to construct any number of levels of numerical problems,
which are idealizations of one another.

Physical fﬁhﬁtion Mathematical Itilerat.lhz'lgdon Numerical
Problem - | PrOblem > | Problem
Physical LL Geometry Weak Form of PDE
Environment 'égg’“ws - Marrix Algebra
Secondary Secondary
I[dealization Idealization

Figure 1. Idealizations of a physical problem to be solved.




The framework described in this paper swars at the level of a mathematcal problem descripdon,
allowing multiple numerical problems to be formuiatzd. soived. and the solution related back o the original
probiem description. The analysis framework is designed to te sxtended. It is possible to add new problem
types that can be soived as well as adding new solution techniques. Current implementation efforts are
focused on finite element discretzatons. However. the framework is designed to be general to utilize other
types of numerical solution procsdures.

Since the analysis framework must take a problem descripdon consistng of a geomewic model and
attributes and construct a solution to the problem specified. it is important to understand abstractions for the
various types of data that the framework uses. As outlined in the next section, geometry-based descriptions
are best suited to meet these neads. The following section briefly introduces the process of performing
geometry-based analyses.

DATA COMPONENTS OF A GEOMETRY-BASED ANALYSIS FRAMEWORK

The structures used to support the problem definition, the discretizations of the model and their inter-
actions are central to the analysis framework. The two structures of the geometric model and attributes are
used to house the problem definiton. The general nature of the atribute structures allow them to also be
used for defining numerical analysis attributes. The analysis discretizadons are housed in the mesh stuuc-
ture which is linked to the geomerric model. The final structure is the field structure which houses the distri-
butions of numerical solution results over the domain of the problem.

Geometric Model

The geometric model representation used by the analysis framework is a boundary representation
based on the Radial Edge Data Structure (Weiler 1988). In this representation the model is a hierarchy of
topological entities called regions. shells, faces, loops, edges and vertices (Figure 2). This representation is
completely general and is capable of representing non-manifold models that are common in engineering
analyses. The use of a boundary representation is very convenient for attribute association and mesh gener-
ation processes since the boundaries of the model are explicitly represented.

ModelRegion
* .
* [ModeiShell MeshEatity
2.
0.21,
* ModeiFace
GeometricModel . % L4 ModelEntity
ModelLoop
»*
L *
ModelEdge
Attribute
. 2
ModelVertex

Figure 2. Boundary representation.




The geometric model classes support operations to dnd the various model enddes that make up a
modei and to find which mode! enudes are adjacent 10 a given 2nity. Other operations relating o perform-
ing gzometwic queries are also supported. The deails of these operations are not important in the current
context. Much more important is the fact that there are associatons berween the ModelEntity class and
both the Armribute and MeshEatity classes. These associations are cenmal 10 being able to support general-
ized adaptive analysis procedures that operate from a general problem definidon.

Attributes

In addidon to geomeuy, information that describes such things as material propertes, loads and
boundary conditions (Shephard 1988) is nesded. This other information is described in terms of tensor val-
ued areributes that may vary in both space and time. Artribute information is organized into a directed acy-
clic graph (DAG). There are threz basic types of nodes in the graph. The leaf nodes of the graph are
informatdon nodes. These nodes hold the actual atwibute information (e.g. an information node might
define a vector with a certain variaton in space and time). Above the information nodes are two types of

grouping nodes which allow for the flexible combination of arributes to form analysis cases which drive
the numerical analysis process.

Tensor valued attributes only make sense when applied to and associated with a geometric model
entity. During this process the graph is traversed. and when the information nodes are encountered at the
leaves of the graph, attribute objects are created. These attributes are a particular instance of the informa-
ton represented in the attribute graph. One reason for the distincton betwesn the informarion nodes and
atributes is that the interpretation of the information node can depend on the path in the graph traversed to
get to that node. Thus one information node may give rise to multiple attributes with different values.

A simple example of a problem definition is shown in Figure 3. The problem being modeled here is a
dam subjected to loads due to gravity and due to the water behind the dam. There are a set of attribute infor-
maton nodes that are all under the attribute case for the problem definition. When this case is associated

with the model, attributes (indicated by triangles with A’s inside of them) are created and attached to the
individual model entities on which they act.

Information Nodes

type:load Geometric
name:water load 8 Model '
Case value:(f(z),0,0) ~ - Artributes
e type:load
type:problem deﬁmuon name:gravity -
name: ... value: (0,0,9.3) -
\ type:stiffness
name: concrete |
f=f(z) type: density value: ...
name:concrete [ __
value: ... -
g
+ type: displacement
name:base - —— =
value: (0,0,0) = A\
=y

Figure 3. Anribute example.




Nodes in the attridute graph have another important property. They can represent an object that is to
be creaed when the atribute graph is waversed. This object is called the image of the attibute and repre-
sents the run time interpretadon of the information of the artribute node and its children.

Mesh

The representation used for a mesh is similar to that used for a geometric model (Beall & Shephard
1997). A hierarchy of regions, faces, edges and vertices makes up the mesh. In addition, each mesh entty
maintains a relation, called the classification of the mesh endry, to the model entity that it was created to
partially represent as indicated in Figures 2 and 4. This representation of the mesh is very useful for mesh
adapdvity. Also understanding how the mesh relates to the geomewic model allows an understanding of
how the solution relates back to the original problem descripdon. The topological representation can be
used to great advantage in performing adaptive p-version analyses as polynomial orders can be directly
assigned to the various 2ntities (Shephard, Dey & Flaherty 1996).

i ModelEnd
GeometricModel * MeshRegion ty
0.2 N
Jo
MeshFacz *
Mesh :
* —>>1 MeshEntity
*
MeshEdg=
2
s
MeshVertex

Figure 4. Mesh representation.

Field

A problem with many “classic” finite element codes is that the solution of an analysis is given in
terms of the values at a certain set of discrete points (e.g. nodal locations or integration points). However
the finite element discretization actually has more information than just the values at these points, there is
also information about the interpolations that were used in the analysis. Therefore, when the standard pro-
cess of storing just the discrete pointwise values is maintained, information is lost after the analysis is run.
Without knowing the specifics of the analysis code it is impossible to reconstruct the interpolations used
and one can not define the values at general locations. This makes it much more difficult to use the solution
in a subsequent step in the analysis (e.g. error estimation, or as an attribute for another analysis). The anal-
ysis framework eliminates this problem by introducing a construct known as a field.

A field describes the variation of some tensor field over one or more entities in a geometric model.
The spatial variation of the field is defined in terms of interpolations defined over a discrete representation
of the geometric model entities, which is currently the finite element mesh. A field is a collection of indi-
vidual interpolations, all of which are interpolating the same quantity (Figure 5). Each interpolation is asso-
ciated with one or more entities in the discrete representation of the model.




Interpolation 2

Field | = {Interpolaton |,

Interpolation 1 Interpolation 2. ...}

Figure 5. Example of a field. -

GEOMETRY-BASED ANALYSIS PROCESSES

The framework represents the analysis process as a series of transformations of the problem from the
original mathematical problem description through to the sets of algebraic equations approximately repre-
senting the problem (Figure 6). This transformation starts at the mathematical problem description level

Problem Analysis

Assembler

Continuous
System

Figure 6. Analysis transformation process.

which contains the geometric model and the attributes which apply to that model. The attributes for a par-
ticular problem are specified by a particular case node in the artribute graph. All of the attributes under this
case node are used for the given problem. An instance of a ContinuousSystem is then transformed to an
instance of the class DiscreteSystem which represents the discretized version of the model and attributes
and the weak form of the partial differential equation (PDE). This transformation is done by an object that

is an instance of a class that is part of a hierarchy of analysis classes. The particular analysis class that is
used depends on the selected weak form of the PDE to be solved.

For each problem definition it is possible to define any number of analyses. An analysis is defined by
combining a problem definition with one or more cases that contain the rest of the information needed to
perform the analysis. Here an analysis is defined by combining a problem definition case with a numeric
case (which contains information relating to the specific numerical techniques used to solve the problem)
and a meshing case (which contains information describing the parameters needed to generate a mesh for
the model being used). The responsibilities of an Analysis class are to:

1. Create a DiscreteSystem of a type appropriate for the problem.

2. Interpret attributes associated 'withA the geometric model and appropriately create StiffnessContributors,
ForceContributors and EssentdalBCs and add them to the DiscreteSystem. '

3. Create an AlgebraicSystem with an appropriate solver.




4. Invoke the solve method or the AlgebraicSystem.

The DiscrereSvsiem class represents the probiem in terms of contibutions from a set of objects that
live on the discrete representation of the model. These objects are called SystemContributors. There are
three types of SystemContibutors: StiffnessConuibutors contribute coupling terms between degrees of
‘reedom of the system. ForceConuibutors contribute terms to the right hand side vector, Constraints set
specific values to given degrees of freedom (e.g. setting the value of a certain degree of fresdom 0 zero).
The SystemContributors are created by the Analysis object and correspond to an interpretation of atributes
consistent with the weak form that the Analysis implements. For example, in a heat transfer analysis. mate-
rial property attributes will give rise to StiffnessConruibutors, applied heat fluxes will give rise to ForceCon- .
wibutors and prescribed temperatres will give rise to Constraints. Typically a SystemContributor
corresponds 0 a mesh entity classified on the model entity where the attribute is applied.

The Analysis class creates all of the SystemContributors and adds them to an instance of a Discrete-
System. There is a hierarchy of DiscreteSystem classes that represent different ime orders of PDEs. This
ransformaton of the problem from the ContinuousSystem to the DiscreteSystem allows the various solu-
tion routines to work on a representation that is independent of the type of problem being solved.

The next step in the solutdon process is to set up and solve the linear algebra. The setting up of the lin-
ear algebra consists of transforming a DiscreteSystem into an AlgebraicSystem. This ransformation is han-
dled by an Assembler object. Essentally an Assembler maps the contributons of each StffnessContributor
and ForceContributor in a DiscreteSystem into the correct entries in the global stiffness matrix and global
force vector in an AlgebraicSystem. ‘

Each type of operation that needs to form a global matrix or vector must use an assembler (either
defining a new one or using an existing one). The base class Assembler provides the operations needed to
do the perfrom the process of assembling the global system through it’s assemble method (this method is
only accessible to subclasses of Assembler). Each derived class must implement the operatdons that need to

be carried out on the matrices returned by the ForceContributors and StiffnessContributors and then call the
base classes assemble method.
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1 Introduction

The computer modeling of a physical problem can be seen as a series of idealizations, each of
which introduces errors into the solution as compared to the solution of the initial problem. Since
these idealizations are introduced to make solving the problem tractable (due to constraints on
either problem size and/or solution time), it is necessary to understand their effect on the solution
obtained and to have procedures to reduce the errors to an acceptable level with respect to the rea-
son the analysis is being performed. Understanding of the effects of idealizations requires a more
complete definition of the problem than is typically used in numerical analysis procedures. In par-
ticular it is necessary to have a complete geometric description of the original domain and have
the rest of the problem defined in terms of that geometry. This paper provides an overview of an
object oriented analysis framework which operates directly off a geometry-based problem specifi-
cation to support adaptive procedures.

We can identify three levels of description that arise in the analysis of a physical problem
(Figure 1). The highest level description is that of the physical problem which is posed in terms of
physical objects interacting with their environment. We often want to obtain reliable estimates of
the response of these objects through modeling. Modeling physical behavior requires a mathemat-
ical problem description which introduces some level of problem idealization, which we want to
control as well as possible. The mathematical problem description consists of a domain definition
(geometry), a description of the external forces acting on the object and the properties of the
object (attributes), and, in the classes of physical problems considered there, a set of appropriate
partial differential equations which describe the behavior of interest. For any one physical prob-
lem there are any number of mathematical problems that can be constructed. Quite often one
mathematical problem description is constructed as an idealization of another. If the mathematical
problem as stated cannot be solved analytically, numerical techniques can be used. Construction
of a numerical problem from a mathematical problem involves another set of idealizations. Again
from a single mathematical problem it is possible to construct any number of levels of numerical
problems, which are idealizations of one another.

The framework described in this paper starts at the level of a mathematical problem description,
allowing multiple numerical problems to be formulated, solved, and the solution related back to
the original problem description. The analysis framework is designed to be extended. It is possible
to add new problem types that can be solved as well as adding new solution techniques. Current
implementation efforts are focused on finite element procedures [6,7]. However, the framework is
designed to be general to utilize other types of numerical solution procedures.

Since the analysis framework must take a problem description consisting of a geometric model
and attributes and construct a solution to the problem specified, it is important to understand
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Figure 1. Idealizations of a physical problem to be solved

abstractions for the various types of data that the tramework uses. As outlined in the next section,
geometry-based descriptions are best suited to meet these needs. The following section briefly
introduces the data needed to perform geometry-based analyses.

2 Data Components of a Geometry-Based Analysis Framework

The structures used to support the problem definition, the discretizations of the model and their
interactions are central to the analysis framework. The two structures of the geometric model and
attributes are used to house the problem definition. The general nature of the attribute structures
allow them to also be used for defining numerical analysis attributes. The analysis discretizations
are housed in the mesh structure which is linked to the geometric model. The final structure is the
field structure which houses the distributions of numerical solution results over the domain of the

problem.
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2.1 Geometric Model

The geometric model representation used by the analysis framework is a boundary representation
based on the Radial Edge Data Structure [1]. In this representation the model is a hierarchy of
topological entities called regions, shells, faces, loops, edges and vertices. This representation is
completely general and is capable of representing non-manifold models that are common in engi-
neering analyses. The use of a boundary representation is very convenient for attribute association
and mesh generation processes since the boundaries of the model are explicitly represented.
Figure 2 shows an object diagram of related to the model package (All of the object diagrams in
this paper use the UML notation [5]).

ModelRegion

*
ModelShell

0.2},
ModelFace

MeshEntity
.|

GecmetricModel | | B | ModelEntity

Modelloop

|+
ModelEdge

Attribute

2
ModelVertex

Figure 2. Class hierarchy of the geometric model representation

The classes support operations to find the various model entities that make up a model and to find
which model entities are adjacent to a given entity. Other operations relating to performing geo-
metric queries are also supported. The details of these operations are not important in the current
context. Much more important is the fact that there are associations between the ModelEntity
class and both the Attribute and MeshEntity classes. What these associations are and their impor-
tance is detailed below.

2.2 Attributes

In addition to geometry, the definition of a mathematical problem requires other information that
describes the such things as material properties, loads and boundary conditions [3]. This other
information is described in terms of tensor valued attributes that may vary in both space and time.
In addition attributes are used to describe information that is non-tensorial in value and may repre-
sent some concept (such as a time integration algorithm and it’s associated parameters).

Attributes information is organized into a directed acyclic graph (DAG). There are three basic
types of nodes in the graph. The leaf nodes of the graph are information nodes. These nodes hold
the actual attribute information (e.g. an information node might define a vector with a certain vari-




ation in space and time). Above the information nodes are two types of grouping nodes. The first
of these is called a group which is simply used to represent the grouping of certain information
nodes. The other grouping node is called a case. The case node has important semantics, it repre-
sents a point in the graph where all the information below it makes a meaningful whole with
respect to some operation.

Tensor valued attributes are only meaningful when applied to a geometric model entity. This pro-
cess of applying attributes to a geometric model is called association. During this process the
graph is traversed, starting from a case node, and when the information nodes are encountered at
the leaves of the graph, attribute objects are created. These attributes (represented by the Attribute
class) are a particular instance of the information represented in the attribute graph. One reason
for the distinction between the information nodes and attributes is that the interpretation of the
information node can depend on the path in the graph traversed to get to that node. Thus one
information node may give rise to multiple attributes with different values.

An simple example of a problem definition is shown in Figure 3. The problem being modeled here
is a dam subjected to loads due to gravity and due to the water behind the dam. There are a set of
attribute information nodes that are all under the attribite case for the problem definition. When
this case is associated with the model, attributes (indicated by triangles with A’s inside of them)
are created and attached to the individual model entities on which they act.

Information Nodes

type:load
name:water load
value:(f(z),0,0) ~ Geometric

~ Model
~ Attributes

Case

type:problem definition

name: ... type:load

name:gravity
value: (0,0,9.8)

type:stiffness
name: concrete
value: ...

f=f(z)-

type: density
name:concrete L —
value: ...

type: displacement
name:base
value: (0,0,0)

Figure 3. Example geometry-based problem definition




Nodes in the attribute graph have another important property. They can represent an object that is
to be created when the attribute graph is traversed. This object is called the image of the attribute
and represents the run time interpretation of the information of the attribute node and its children.
Each attribute node that will give rise to an image has a string that identifies the class of the object
to create as its image. The current implementation maps these strings to creator functions for the
objects which take in the attribute node as an argument.

type: time integrator
image class: backward euler

type: start time | |type: end time type: delta t type:linear solver
value:... value:... value: ... image class: direct solver

Figure 4. Portion of an attribute graph specifying a time integrator.

Figure 4 shows an example of the portion of the attribute graph that specifies a time integrator to
be used in solving a particular analysis. In this case a backward Euler integrator is specified as
indicated by the image class field of the group node of type “time integrator”. This means that, at
run time, an object of the class mapped to the image name “backward euler” (which is the class
BackwardEuler) will be created. When the object is created it is passed the node that specified its
creation so that it can extract addition information that it needs. In this case the additional infor-
mation is the starting time, ending time, the time step to use, and the linear solver to use to solve
the systems of equations that it constructs. Note that the linear solver node also has an image class
specified which means that an object will be created representing this node (which will be used by
the time integrator object). In this example, to change the type of linear solver used, it is simply a
matter of changing the image class of the “linear solver” information node. For example its image
class could be changed to “conjugate gradient” and then the time integrator would use this solver
to solve its equations. This technique is used throughout the framework to allow the users to spec-
ify the run time behavior of the program.

2.3 Mesh

The representation used for a mesh is similar to that used for a geometric model [2]. A hierarchy
of regions, faces, edges and vertices makes up the mesh. In addition, each mesh entity maintains a
relation, called the classification of the mesh entity, to the model entity that it was created to par-
tially represent as indicated in Figures 2 and 5. This representation of the mesh is very useful for
mesh adaptivity, the support of which is important for the framework. Also understanding how the
mesh relates to the geometric model allows an understanding of how the solution relates back to
the original problem description. The topological representation can also be used to great advan-
tage in performing adaptive p-version analyses as polynomial orders can be directly assigned to
the various entities [4].
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MeshRegion
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*
MeshFace *
Hesh ] * — MeshEntity
*
MeshEdge
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*
MeshVertex

Figure 5. Class hierarchy for representing a mesh

2.4 Field

A problem with many “classic” numerical analysis codes is that the solution of an analysis is
given in terms of the values at a certain set of discrete points (e.g. nodal locations or integration
points). However the finite element discretization actually has more information than just the val-
ues at these points, there is also information about the interpolations that were used in the analy-
sis. Therefore, when the standard process of storing just the discrete pointwise values is
maintained, information is lost after the analysis is run. Without knowing the specifics of the anal-
ysis code it is impossible to reconstruct the interpolations used and one can not define the values
at general locations. This makes it much more difficult to use the solution in a subsequent step in
the analysis (e.g. error estimation, or as an attribute for another analysis). The analysis framework
eliminates this problem by introducing a construct known as a field.

A field describes the variation of some tensor over one or more entities in a geometric model. The
spatial variation of the field is defined in terms of interpolations defined over a discrete representa-
tion of the geometric model entities, which is currently the finite element mesh.. A field is a col-
lection of individual interpolations, all of which are interpolating the same quantity (Figure 6).
Each interpolation is associated with one or more entities in the discrete representation of the
model.

Interpolation 2

Field 1 = {Interpolation 1,

Interpolation 1 Interpolation 2, ...}

Figure 6. Representation of a field defined over a mesh




One general form of a tensor field is a polynomial interpolation with an order associated with each
mesh entity. Since in some cases it is desirable to have multiple tensor fields with matching inter-

polations, the polynomial order for a mesh entity is specified by another object called a Polynomi-
alField which can be shared by multiple Field objects.

PolynominalField hi Field
*
Interpolation
? s
Parametriclnterpolation . Mapping
ShapeFunction MeshEntity *| Dof

Figure 7. Classes used to represent a field

3 The Analysis Process

The framework presents the analysis process as a series of transformations of the problem from
the original mathematical problem description through to sets of algebraic equations approxi-
mately representing the problem. This transformation starts at the mathematical problem descrip-

Problem Analysis

Assembler

Discrete
System

Continuous

Algebraic
System

System

Figure 8. Solution of a mathematical problem description as a series of transformations

tion level which is described by a class named ContinuousSystem, which contains the geometric
model and the attributes which apply to that model. The attributes for a particular problem are
specified by a particular case node in the attribute graph. All of the attributes under this case node




are used for the given problem. An instance of a ContinuousSystem is then transformed to an
instance of the class DiscreteSystem which represents the discretized version of the model and
attributes and the weak form of the partial differential equation (PDE). This transformation is
done by an object that is an instance of a class that is part of a hierarchy of analysis classes. The
particular analysis class that is used depends on the selected weak form of the PDE to be solved.

3.1 The Analysis Classes

For each problem definition it is possible to define any number of analyses. An analysis is defined
by combining a problem definition with one or more cases that contain the rest of the information
needed to perform the analysis, as shown in Figure 9. Here an analysis is defined by combining a
problem definition case with a numeric case (which contains information relating to the specific
numerical techniques used to solve the problem) and a meshing case (which contains information
describing the parameters needed to generate a mesh for the model being used).

type: analysis

type: problem deﬁnitio)

type: meshing

rest of graph describes rest of graph describes rest of graph describes
problem definition numerical methods used to  how to generate
solve the problem discretization of model

Figure 9. Structure of an analysis definition

The information contained in each of these cases is responsible for controlling a particular aspect
of performing the analysis. The system is data driven using the information contained in the
attribute graph.

Analysis classes (those derived from the base class Analysis) implement behavior that is specific
to a particular type of analysis. In this context a “type of analysis” corresponds to a particular
weak form of the PDE being solved. For each type of problem there can be more than one analysis
(representing different ways to solve the same problem).

The responsibilities of an Analysis class are to:
1. Create a DiscreteSystem of a type appropriate for the problem

2. Interpret attributes associated with the geometric model and appropriately create StiffnessCon-
tributors, ForceContributors and EssentialBCs and add them to the DiscreteSystem.

3. Create a solver of the appropriate type, passing it the DiscreteSystem




Analysis

i

FEAnalysis oo e
L |
HeatTransferAnalysis ElasticityAnalysis

i

[ ]

StaticHeatTransfer TransientHeatTransfer

Figure 10. Class Hierarchy of the analysis classes

3.2 Discrete System

O_r‘ StiffnessContributor
*

DiscreteSystem K>—~———— ForceContributor

Constraint

DiscreteSystemZercOrder DiscreteSystemFirstOrder P

process(Assembler) process(Assembler)

Figure 11. The DiscreteSystem and derived classes

The DiscreteSystem class represents the problem in terms of contributions from a set of objects
that live on the discrete representation of the model. These objects are called SystemContributors.
There are three types of SystemContributors: StiffnessContributors contribute coupling terms
between degrees of freedom of the system, ForceContributors contribute terms to the right hand
side vector, Constraints set specific values to given degrees of freedom (e.g. setting the value of a
certain degree of freedom to zero). The SystemContributors are created by the Analysis object and
correspond to an interpretation of attributes consistent with the weak form that the Analysis




implements. For example, in a heat transfer analysis, material property attributes will give rise to
StiffnessContributors, applied heat fluxes will give rise to ForceContributors and prescribed tem-
peratures will give rise to constraints. Typically a SystemContributor corresponds to a mesh entity
classified on the model entity where the attribute is applied.

The Analysis class creates all of the SystemContributors and adds them to an instance of a Dis-
creteSystem. There is a hierarchy of DiscreteSystem classes that represent different time orders of
PDEs. DiscreteSystemZeroOrder represents an equation of the form F(x, r) = 0, DiscreteSys-
temFirstOrder represents an equation of the form F(x, x',t) = 0 and so on. This transformation
of the problem from the ContinuousSystem to the DiscreteSystem allow the various solution rou-
tines to work on a representation that is independent of the type of problem being solved.

3.3 Algebraic System

The next step in the solution process is to set up and solve the linear algebra. The setting up of the
linear algebra consists of transforming a DiscreteSystem into an AlgebraicSystem. This transfor-
mation is handled by an Assembler object. Each solution algorithm (e.g. a backward Euler time
integrator or a SIRK) must create an Assembler that knows how to create the specific algebraic
equations that the solution algorithm needs. This Assembler is used by the algebraic system to
construct or update it’s internal representation of the equations to be solved.

Algebrai t
gebraicSystem Matri

DiscreteSystem solve()

timestep() <>——— Vector

update()

updateRHS() <

updateLHS() Assembler

O_L LinearSystemSolver

Figure 12. Structure of the AlgebraicSystem class

Essentially an Assembler maps the contributions of each StiffnessContributor and ForceContribu-
tor in a DiscreteSystem into the correct entries in the matrix A and vector b in an AlgebraicSys-
tem. The easiest way to understand this is to consider a simple example of using Backward Euler
to solve a first order PDE. In this case the equation we are solving is:

Mi+Ku = f

where each of the global matrices and vectors is the sum of the contributions of the individual sys-
tem contributors (M., K, f;.): '

M = ZMSC,K = ZKSC and f = stc

when the Backward Euler algorithm is applied to Eq. the resulting equation is of the form:

10




(M + KAt)u = f+Mu,

n+l1 —

If this equation is then mapped into Ax = b we find that:

A= M+KA:
b=f+Mu,

and, of course, basically the same thing happens at the level of the individual system contributors.

In the solution process what needs to be done is to form Equation from the contributions of the
individual system contributors. It would be inefficient to first form a global M, K and f and then
perform the algebra needed to form the final equation. A more efficient way to do this would be to
separately transform the individual contributions according to Equation and directly assemble
them into the desired form. This is the task of the assembler.

Each type of operation that needs to form a global matrix or vector must use an assembler (either
defining a new one or using an existing one). The base class Assembler provides the operations
needed to do the actually assembly into a global system through it’s assemble() method (this
method is only accessible to subclasses of Assembler). Each derived class must implement the
operations that need to be carried out on the matrices return by the ForceContributors and Stiff-
ness contributors and then call the base classes assemble() method.

Two examples of Assembler subclasses are shown in Figure 13. One, the BackwardEulerAssem-
bler, was discussed above. The other, the MatrixAssembler, just directly assembles the matrix
contributions with no additional manipulations.

Assembler

accept(...)
assembie(...) (protected)

i

MatrixAssembler BackwardEulerAssember

accept(...) ® accept(...) o)

H

-

A=M+KA
b= f+Mu,

Figure 13. Part of the Assembler class hierarchy

An assembler gets the contributions from the individual system contributors by being passed to a
DiscreteSystem process() method. For all the appropriate system contributors contained in the
DiscreteSystem, this method passes the assembler to the contributors accept() method. The con-
tributor then calculates what is it contributing to the system and passes the result (which is either
an ElementMatrix or a ForceVector) to the assembler’s accept() method.




4 Extending the Framework

One of the most important goals of designing the analysis framework is to make it easily extend-
able to meet unforeseen needs. There are two major categories of extension that the framework
allows: adding new types of analyses and providing replacements for functional components that
can be used by any analysis (e.g. linear solvers, time integrators, etc.).

4.1 Adding a New Analysis

To add a new analysis type to the framework a class derived from Analysis (e.g. the HeatTransfer-
Analysis class in Figure 10) must be defined for the new analysis and system contributors appro-
priate for the analysis must be written. The class derived from Analysis embodies the knowledge
of how to interpret attributes that are applied to the geometric model in a manner consistent with
the weak form of the PDEs being solved and create the appropriate system contributors.

Also the various system contributor for the analysis must be written. In the case of the heat trans-
fer example, there are three classes that need to be written (Figure 14): the HeatTransferSC (stiff-
ness contributor) that calculates coupling between degrees of freedom of the temperature field on
the interior of the domain, HeatFlux which calculates contributions due to applied heat fluxes and
TemperatureBC which is a constraint that arises due to prescribed values of temperature.

SystemContributor
StiffnessContributor ForceContributor Constraint
HeatTransferscC HeatFlux TemperatureBC

Figure 14. System contributor .lasses for heat transfer analysis

4.2 Adding a New Functional Component

Many of the functional components of the framework are designed for easy replacement. Among
these are the mappings and interpolations used to define a field, solvers for linear and non linear
system and spatial and temporal integration procedures.

Each of these are replaceable by deriving a new class that implements the appropriate functional-
ity from the appropriate base class and registering the new class with the framework so that it can
be created as needed.




5 Closing Remarks

This paper has described an object oriented framework for performing geometry-based finite ele-
ment analyses. The geometry-based approach was selected to give a firm foundational for per-
forming adaptive procedures. An object oriented design and implementation was used to allow the

framework to be easily extended to new problem areas. The resulting framework has been used to

implement a number of different types of analyses. Current efforts are focused on implementing
adaptive strategies within the framework.
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COMPUTER-AIDED MULTISCALE MODELING TOOLS
FOR COMPOSITE MATERIALS AND STRUCTURES*

V. BeLsky. M. W. BearL, J. Fisd, M. S. SHEPHARD and S. Goyaa
Rensselaer Polytechnic Institute, Troy, NY 12180. U.S.A.

Abstract—This paper presents recent research efforts at Rensselaer Polytechnic Institute aimed at

developing computer-aided muitiscale modeling tools for composite materials and structures aimed

at predicting the macromechanical (overall) structural response, such as critical deformation. vibration

and buckling modes, as well as various failure modes on the mesomechanical (lamina) level. such as

detamination and ply buckling. and on the micromechanical (the scale of microconstituents) level. such
' as debonding, microbuckling. etc.

The building blocks of this technology are (i) idealization error estimators aimed at quantifying the
quality of the numerical and mathematical models of composites, (ii) multigrid technology aimed at
superconvergent solution of the multiscale computational models, (iif) mathematical homogenization

: theory aimed at constructing inter-scale transfer operators for rapid and reliable information flow between
the scales, (iv) system identification for in situ characterization of the phases and their interface, and
(v) multiscale mode! construction and visualization.

1. BACKGROUND

1.1. Idealization error estimators

Idealization error estimators for laminated composite
shell structures are aimed to quantify three sources of
errors and to address the following issues:

(i) Identifying the regions within the problem
domain where the macromechanical description (shell
model), which is the most inexpensive modeling
capability, is insufficient, i.e., introduces unacceptable
errors with respect to a more comprehensive ply-by-
ply (mesomechanical) model. Idealization error esti-
mators should be able to identify not only the precise
location within the plane of the shell, but also the
layers within the laminate where the use of meso-
mechanical description may result in unacceptable
errors of interlaminar stresses. )

The Dimensional Reduction Error estimator
(DRE) developed in Ref. 1 builds on the earlier works
on residual based error estimators. By this technique
dimensional reduction error e=u®* —ufEx= B is
approximated by a linear combination of some basis
in the auxiliary mesomechanical finite element mesh.
The unknown coefficients f8 are found by solving the
auxiliary problem:

%{O.Sa(u“ + ¢, utE + Df),

— (T + P b)g— (DB, 0} =0 (1)

*Paper presented at the 3rd National Symposium on
Large-Scale Structural Analysis for High-Performance
Computers and Workstations, held 8-11 November
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where @ is defined to maintain C° continuity of
ufE 4 e, and to satisfy essential boundary conditions;
a(u, v) and (u, v) are bilinear symmetric forms defined
by

a(u,v)= JV’uTDV’v dQ and (u,v)= Juv dQ;

Vu represents the symmetric gradient of w and D is
a constitutive tensor. To ensure that the dimensional
reduction error estimation takes only a small fraction
of the entire computational effort, the Hessian matrix
resulting from (1) is replaced by a diagonal or block
diagonal form. For details see Ref. 1.

(i) Enriching the fundamental kinematics of the
equivalent single-layer (macro) model with a discrete-
layer (meso) model in the vicinity of the most critical
layers enables modeling of various failure modes on
the lamina level such as delamination. Unfortunately,
in many cases the mechanism that causes failure is at
a much smaller scale—the scale of microconstituents.
A common computational rationale today is to
investigate various microprocesses that may lead to
a progressive failure by considering a unit cell or
representative volume problem. The mechanism that
allows us to do so is a periodicity assumption.
However, in the areas of high stress concentration,
which are of critical interest to the analyst, periodicity
assumptions are not valid, and thus the application
of conventional homogenization techniques in the
“hot spots™ may lead to poor predictions of local
fields.

The adequacy (or lack oflt) of the homogenization
o) the basis of
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the uniform validity of the double scale asymptotic
expansion, which serves as a basis of mathematical
homogenization theory. The double scale asymptotic
expansion of the form

u(z.y) = u'(y) + eH@z)Vu'(y) + *P(2)Vu'(y) . .. (2)

is considered to be uniformly valid if the terms
in the asvmptotic sequence are rapidly decreasing.
In Eq. (2) y is the position vector on the meso-scale
and z = y/e is the coordinate in the unit cell: V is the
symmetric gradient operator: functions u(y), H(z),
P(z) are found by inserting asymptotic expansion
inlo the strong torm of equilibrium conditions and
by identifying equal powers of ¢. The quality of
homogenization is assessed on the basis of the relative
magnitude of the first term neglected by the classical
homogenization theory ¢2P(z)Vu(y) to the first two
taken into account.

A closed form expression of idealization error
estimators associated with the Microscale Reduction
has been derived in Ref 2. The proposed MRE
estimator relates the homogenization (or scale
reduction) error to macroscopic fields (strain and
strain gradients) and to the details of microstructure
(compliances of phases, volume fraction and the size
of the unit cell). A simplified form of such homogen-
ization error (or MRE) has been derived in Refs 2,3
which shows that

Homogenization error

_yplG - Glal —a) | Ve
Cer 2 e

A3)

where C; and C, are the compliances of the micro-
constituents, C,q the effective compliance of the unit
cell, @ the volume fraction, Y the size of the unit
cell, || Ve®|| ¢ the energy norm of the gradient of the
macroscopic strain field in the homogenized FE
mesh.

From the above expression it is evident that
there are four factors affecting the homogenization
error: (i) The size of the unit cell in the physical
domain Y, (ii) the normalized compliance difference
|C, — G,|/Ce, (iii) the volume fraction a(l —ea)/2,
(iv) the strain gradients on the macro-scale.

1.2. Fast iterative solvers for a heterogeneous medium

The multigrid technology with special inter-scale
connection operators has been found to possess
superconvergent characteristics for the periodic
heterogeneous medium.>* The multigrid procedure
starts by performing several smoothing iterations on
the micro-scale in the regions identified by MRE
indicators, typically using Gauss—Seidel or Conjugate
Gradient method with diagonal scaling. Conse-
quently, the higher frequency modes of error are
damped out immediately. The remaining part of the
solution error is smooth. and hence. can be effectively

damped out on the auxiliary coarse mesh. It has
been proved** that the finite element mesh on the
meso-scale (ply level) serves as a perfect mechanism
for capturing the lower frequency response on the
micro-scale. Therefore. the residual in the fnite
element mesh on the micro-scale is restricted to the
meso-scale, and the smooth puart of the solution is
captured in the finite clement mesh on the meso-scale.
The oscillatory part of the solution on the meso-scale
is again damped out by one of the classical smoothing
procedures. The lower frequency response on the
meso-scale is perfectly captured on the macro-mesh
(shell level). The resulting solution on the meso-scale
is obtained by prolongating the displacement field
from the macro-mesh back to the finite element mesh
on the meso-scale and by adding the oscillatory part
of the solution previously captured on the meso-scale.
Likewise, the solution on the micro-scale is obtained
by prolongating the smooth part of the solution from
the meso-scale and by adding the oscillatory part
that has been captured by smoothing. This process is
repeated until satisfactory accuracy is obtained.

The derivation of the inter-scale tfansfer operators
is based on the asymptotic solution expansion, which
assumes infinitesimality of the unit cell size. The
asymptotic forms of the prolongation and restriction
operators are obtained by discretizing the corre-
sponding asymptotic expansions. For unit cells of a
finite size the regularization function is introduced to
obtain a well-behaved inter-scale transfer operators.
The resulting homogenization based prolongation
operator is given by:

Q= Q +dQCV,N(X,) 4)

where Q is the standard linear prolongation
operator; d is the unit cell solution; V.N(X,) the
symmetric gradient of the shape functions in the
auxiliary grid evaluated at the Gauss points in
the auxiliary mesh; C the projection operator aimed
to maintain C° continuity of the displacement field on
the micro-scale. For more details see Ref. 3.

The rate of convergence of the multigrid process
has been studied in Ref. 4. It has been proved that
for problems in periodic 1-D heterogeneous media
the rate of convergence of the two-grid method with
special inter-scale transfer operators is given by:

le™*'l =[q/(4 - lie’)
and

q= {(DlD:)’ 2//[0_5(D] + D:)]}z (5)

where D, represent the stiffnesses of microcon-
stituents. Note that if the material is homogeneous
and the mesh is uniform, then D, = D, and we recover
a classical two-grid estimate: je'"'|| = 1/3 fle'll.
Otherwise ¢ < I resulting in fe' "/l e']| < 1/3.
Note that if the stiffness of a fiber is significantly
higher than that of a matrix. ie D, » D,. then the
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multigrid method converges in a single iteration.
In multidimensions, convergence of the multigrid
process for periodic heterogeneous media has been
studied in Ref. 3. It has been found that a conver-
gence trend characteristic of the 1-D cases is closely
followed in multidimensions.

1.3. The

constitutive laws

inverse of  the

problem—calibration

The success of the multiscale computational tech-
nology depends on the in situ characterization of
nonlinear behavior of phases and their interaction
through the interface. Thus it is necessary to con-
struct a systematic approach aimed at calibrating the
material parameters of the matrix and the interface
to the observed boundary measurements. The observ-
able experimental data could be of a very global
nature, such as average strains or lower frequency
modes, as well as of a very local nature on the
micromechanical level. s For example. using moire
interferometry,’ it is possible to measure displace-
ments on the surfaces with spatial resolution of up
to 0.4 pm. Experimental data of a lesser detail can
be obtained by photodepositing a mesh of dark and
bright lines on the specimen surface. This technique
has been successfully used in Ref. 6 to measure the
localized shear strains in the metal matrix emanating
from the crack tip.

The inverse problem for estimating the control
variables, defining the shape and the size of the failure
surfaces of the matrix and the interface, is formulated
on the basis of regularized least squares principle,
which states:

Find: the control variables h

Such that:

&(d) = K,J (Nd — Z,,Nd — Z,)dr

Tobs

+ Ky(e(d) — Z,, e(d) — Z,) = min(d)  (6a)
Subjected to:
r= fex( - fim (d’ h)

=0 and h,;, <h<h,, (6b, ¢)
where N and d represent the finite element shape
functions and nodal displacement vector, respect-
ively; Z, is the experimental data of the displacement
field on I,; Z, are the overall strain measurements
obtained from the strain gauges and e(d) are the
corresponding average finite element strains; K, and
K, are weighting parameters, which are used to scale
two different sources of information; f,,, and f,, are
external and internal force vectors; h, and h_, are

max

some bounds on control variables that might be

possible to obtain from the experimental data on like process in the spirit of adaptive composite grid

o]
w

individual constituents. The scalar product of the two
vectors u and v is denoted by (u,v). In Eq. (6) the
experimental “noise” function is omitted. For details
see Ref. 7.

1.4, Multiscale model construction

The use of muitiscale analysis in an adaptive
environment requires the ability to automatically
construct models of different kinds. Microstructural
models must be constructed as necessary as well as
transition models between the different analysis
scales. The construction of these microscale models
is donc from a microstructural description that in-
cludes information on the geometry and material
properties of the constituents, and the composition of
the composite in terms of these constituents. These
microscale models are more complex than just a
simple unit cell model as they must conform to
the geometry of the macroscale model, not just the

-geometry of a unit cell. Currently we are producing

these microscale models by the repetition of a mesh
of a unit cell model which limits the microstructure
models to being on planar faces in the macro model.
This mesh is made periodic by special mesh matching
procedures in the Finite Octree mesh generator.” The
transition mesh between the two models is made by
first creating a geometric model that is composed of
a region that represents the boundary of the unit cells
embedded in a region that is the union of elements in
the macro mesh that are being modeled at the micro
level. This nonmanifold model is then meshed using
the Finite Octree mesh generator.?

2. ITERATIVE GLOBAL-LOCAL PROCEDURE FOR
PERIODIC HETEROGENEOUS MEDIA
WITH TRANSITION ZONE

In this section we describe an iterative global-local
algorithm for solving problems in a periodic hetero-
geneous medium, where the local region of interest
Q, is modeled on the microscale, while elsewhere
the medium is treated as homogeneous. The local
region(s) are selected in the portion of the macro
problem domain Q, (Q, = ;) where microscale
reduction error indicators? indicate that the classical
homogenization theory is invalid. We assume that
there might be a lack of conformity between the
boundary of rectangular array of unit cells forming -
the local region and the element boundaries in the-
unstructured macro-mesh. In order to patch between
the two meshes, we introduce an intermediate
mesh on Q, as the smallest region so that the local
region is embedded within Q(Q, = Q, < ) and
the boundaries of intermediate mesh on Q, match
the element boundaries in the global grid as shown
in Fig. 1. The transition mesh as well as the macro-
mesh are assumed to possess homogenized material
properties.

In the following we describe a three-level multigrid
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Mesh with areas to be
locally modeled indicated
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local area

: —
Extract boundary of

Create local microstructural model

Local Models for Multiscale Analysis

Create local transition mode! w/
boundary of unit cells

Mesh local model

\ by repetition of unit cell mesh
—
—

B

Fig. 1. Ilustration of macro-mesh, transition mesh and micro-mesh.

method (FAC)>'® and multilevel adaptive technique
(MLAT).!

1. Solve the global problem on the auxiliary

macro-grid. Let f, and A, denote the force
vector and the stiffness matrix on the auxihary
macro-mesh, then the solution u, on the
auxiliary macro-mesh can be schemaucally
expressed as

= Ag',. (7

. Select the critical region using MRE

indicators.

. Encompass selected elements in the critical

region with a rectangular array of unit cells
and define the transition region, such that
it entirely encompasses selected unit cells.
External boundaries of the transition zone are
defined as a minimal space occupied by the
elements in the macro-mesh encompassing the
selected rectangular array of unit cells.

. Prolongate the macro solution onto the inter-

face I, between the macro domain and the
intermediate mesh

us(ros) = Qu() ) (8)

where subscript s denotes the quantities in the
intermediate mesh.

5. Solve the problem on the intermediate mesh,

subjected to the interface essential boundary
conditions

u =A'f,
subject to
uS = uS (ros) on FOS (9)

where the subscript s is used to denote various
quantities in the intermediate mesh.

. Prolongate solution onto the interface I

between the intermediate mesh and the rec-
tangular array of unit cells forming the micro-
grid using homogenization based prolongation
operator (4). The subscript 1 is reserved for the
micro-mesh

' ul(rsl)=QUS' (10)

. Solve the problem on the intermediate mesh,

subjected to the interface essential boundary
conditions on I,

u =AM,
subject to

U, =u{l Yon [ _ (11




217

Computer-aided multiscale modeling tools

HONNGLISIP £F12UD UIZNS U SIO1DIPUL 10415 UONONPOI S|UISOIDNA "SIIpULAD om) Jo yurof due g iy

! uonnjos sjeosinpy

.. . ON < 06/0/0/0/0/0
oma\om\m\om\o : qn} ojisodwioy
g aqnj ausodwo) _ v

AN

[ g A"

12D hugy

_ ,,w.__,..__mmua._m:hm“_:_ 0] pajoal(ns saqgnj} alisodwon

i




Belsky er al.

V.

218

| _tonnjos sieosniniy

S

“(*'0) sa8$21)S [BINE JO UONNQUISI ‘siopur]£d omy jo juiol de g 81y
pouow

s

Bt
it

_ 06/0/06/0/06/0
~.§g aqn} ajsodwo)

«

oo nun

54d _mc._mE_wo.w pajoalgns saqn} ausodwon



Computer-aided multiscale modeling tools

“("Yo) sassanis JvAYS Jo uonnquisi(y ‘s1apuyhd omi jo juiof deq 'y Sig

poLou uoy

N
06/0/06/0/06/0

3 Ng agny ajisodwon
: AN

eziusbouiopy




Vo Belsky ¢ al.

220

‘(*0) sassons Suipad jo uonnquisiq 'sivpuijfo omy jo ol deq ‘¢ 8ig

06/0/06/0/06/0
< § aqn} ansodwio)

//

aunssaid jeusaju 0} paroa]gn

potjiow uoneziualbowo

S SO0

§

wiof de

6/0/0/0/0/0

1D nun

a duog




{

22

fing tools

¢ maodet

Ci

Computer-aided multis

X s

3
:
H
w.

SAYSALU-0IDIW PUR UONISUL *-0JORWU UF S3SS21)S {RIXY “udwidads payorso jo wsjqold uoisuay [eixy ‘9 -Sig

orLas {sour uoIsuL

0g

ysaw-o01011 (0) _ p,_moE osoep ()

ajeos
00t

s




222 V. Belsky ef al.

The svstem of cquations described in (11) can
be solved cither divectly or tteratively. The
latter s @ two-grid process with an auxiliary
grid corresponding to the finite element mesh
with homogencous material properties. This
variant has been successfully used in Ref. 3 and
has been found to have a clear advantage over
the direct method in the case of a large number
of unit cells.

Restrict the residual to I, using a homogeniz-
ation based restriction operator

oo

r=(0 = Au)g o + Q¥ — Ao, (12)
9. Correct the solution on the intermediate mesh
wi=u+wA'r, (13)

where w, is intermediate mesh relaxation
parameter.
10. Restrict the residual to Iy,

= (f— Ao“o)oo/ns + Q*(f, — As“s)n,- (14)

11. Correct the solution on the intermediate mesh

Ug: = Uy + WoAg 't (15)

where w, is the macro-mesh relaxation
parameter.

The solution is considered as converged if the
L,-norm of residuals in the composite grid defined by
{r,(Q)r,(Qs/Q) 1o (Q,/Q;)} is much smaller than the
corresponding initial norm.

3. NUMERICAL EXAMPLES

Our numerical experimentation agenda includes
two test cases. In the first, we consider a lap joint
made of high-temperature composite tubes subjected
to internal pressure. The composite is fabricated from
silicon carbide fibers embedded in a titanium matrix.
The layups of tubes A and B shown in Fig. 2
are [0/0/0/0/0/90] and [0/90/0/90/0/90], respectively.
Each layer is represented with 6 unit cells. The
silicon carbide-titanium composite system has been
considered with the following properties of micro-
constituents: SiC:" E, =425GPa, v,=0.25 Ti:
E,=106.9 GPa, v, =0.32. The internal pressure was
selected as 0.055 GPa. The micromechanical finite
element mesh included 16 elements per each unit
cell.

The multi-grid process has been carried out on the
4 different mesh levels: micro-mechanical (fine) mesh
and three macro-mechanical meshes. The V-cycle
has been used with 1 pre- and 1 postsmoothing
Gauss-Seidel iteration on the intermediate levels;
3 pre- and 3 postsmoothing Jacobi iterations on the
finest level and direct solver on the coarsest level

It was necessary to perform 34 multi-grid cyeles to
achieve convergence with a tolerance of 0.001. The
distribution ol homogenization errors 1s : dicated
in Fig. 1. In the bottom of Fig. | we compare the
distribution of the strain “energy absorption at
the intersection of the two tubes as obtained with the
proposcd multiscale procedure and on the basis of
classical homogenization theory. The distribution of
the peeling. shear and normal axial stresses in the
whole domain as well as in the critical regions arc
presented in Figs 2—4. respectively. It can be seen that
the classical homogemzation theory underestimates
maximum stresses in the critical regions.

In the second example we consider an axial tension
problem of the cracked composite specimen with the
following normalized material properties: E,/E, = S:
v,=v,=0.25. The microcrack was embedded
between two unit cells in the center of the specimen
as shown in Fig. 5. The problem has been analyzed
using three different meshes: (i) The crack-free macro-
mesh with homogenized material properties in the
whole problem domain, (ii) the crack free transition
mesh placed inside the middle macro element with
homogenized material properties, and (iit) the micro-
mesh, describing the microstructure of the composite
system in the close vicinity (7 x 7 x 2 unit cells) of
the microcrack. Adaptive composite grid method
(FAC) with homogenization-based restriction and
prolongation operators has been employed, where the
information between the different meshes flows
through the interfaces only. Note that in the present
example the macro- and micro-meshes represent
different mathematical models. It was necessary to
carry out 23 cycles to achieve the convergence with
a tolerance 107% The distribution of the normal
stresses on the different levels is depicted in Fig. 6,
which reflects the force redistribution due to fiber
breakage.

Acknowledgements—The support of ARPA/ONR under
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ABSTRACT

The paper investigates computational efficiency of various
finite element solvers, including the state-of-the-art iterative
methods based on multigrid-like and Modified Incomplete
Cholesky preconditioners, as well as sparse direct solver recently
developed at NASA Langley. These methods are compared to the
newly developed Finite Element Criented Solver (FEQS), which
combines the advantages of the iterative and direct solution tech-
niques. Numerical tests are conducted for both well-conditioned
three dimensional problems as well as poor-conditioned problems,
such as thin shells. The proposed FEOS solver has been found to
possess a remarkable robustness and computational efficiency, by
far superior to its comprising ingredients.

INTRODUCTION

The performance of linear solvers in terms of CPU time for

symmetric positive definite systems can be approximated as
CNP® | where N is the number of degrees-of-freedom, and C. B
are soluton dependent parameters. The major advantage of direct
solvers is their robustness, which is manifested by the fact that
parameters C and B are independent of problem conditoning
(except for close to singular systems). Direct solvers are ideal for
solving small up to medium size problems (since the constant C
for direct methods is significantly smaller than for iterative solv-
ers). but becomes prohibitively expensive for large scale problems
since the value of exponent for direct solvers is higher than for
iterative methods. For large well conditioned three dimensional
problems the storage and CPU time requirements for direct meth-
ods are so large that serious consideration of competing methods
is a virtual reality.

Recent years saw a re-emergence of iterative solvers in finite
element structural analysis due to increasing demand to analyze
very large finite element systems. Nevertheless, the major obstacle
that needs to be overcome before iterative solvers can be routinely
used in commercial packages is circumventing their pathological
sensitivity to problem conditioning, which is manifested by the

increase of constant C with degradation in problem conditioning.
Moreover, for linear stadc analysis any type iterative method
requires (except for the stiffness and preconditioner formation and
factorization) for each load case a new iterative process (whereas
in a direct solution, factorization is performed only once, and each
load case requires only forward reduction and back substirution).

This paper presents a Finite Element Oriented Solver (FEQS),
which exploits specific properties of the problem. including a
finite element discretization and estimated problem conditioning
in constructing a nearly optimal solution srrategy. The FEOS is a
hybrid solver with built in strategist that combines muitigrid-like
principles with efficient Incomplete Cholesky based smoothing
techniques and state-of-the-art sparse direct methods for solving
auxliary preconditioned systems. Its major characteristics are
summarized below:
“Computational efficiency and robustness: FEOS is faster and
requires less storage than the sparse direct solver for wide range of
practcal problems including those with distorted geometries,
unstructured meshes, strong anisotropies - all giving rise to poor
conditioned problems.
*Fully automated: FEOS a priori selects an optimal solution strat-
egy based on the estimated conditioning, problem size. number of
load cases, etc.

Subsequent sections describe the building blocks of FEOS.
Numerical experiments comparing the performance of FEQS with
its basic constituents alone are given in the last section.

SPARSE DIRECT SOLVERS
Consider a sparse symmetric positive definite linear system
Au=f u€ Ro fe R® (1)

where A isthe nxn symmetric and positive definite matrix;
u and f are vectors of order n . Traditionally, the linear equa-
tion solvers employed have been envelope, band or frontal type.
The common idea behind all these methods is that zeros outside
the envelope of A are preserved in its Cholesky factor L. In
order to reduce the storage requirements for the factor, the linear




system is reordered o0 reduce the envelope, band or front size.
Among the effectdve envelope-reducing algorithms include the
reverse Cuthill-McKee (George, 1981), Gibbs-Poole-Stockmeyer
(Crane. 1976) and Gibbs-King (Lewis, 1982) ordering algorithms.
Generally, zero enuies within the envelope structure are not
exploited as they are in tue sparse solvers, and thus for large
problems envelope-type methods can be much more demanding
than true sparse solvers. Yet envelope-type methods have been
very popular primarily due to their simplicity and ease of reorder-
ing algorithms.

A true sparse solver attempts to reduce an overall storage and
arithmetc requirements by storing and computing only the logical
nonzeros of the factor marrix. By this technique the linear system
of equadons is reordered to reduce the number of nonzeros in the
factor matrix irrespectve of any envelope structure. Indeed, effec-
ave ordering algorithms for true sparse solvers, such as Minimum
Degree algorithm (George. 1987) generally scatter many of the
nonzeros away from the diagonal and thus are entirely inappropri-
ate for an envelope-type methods. Nevertheless, true sparse matrix
methods have not gained wide acceptance among the software
developers for large-scale applications primarily because general
sparse orderings were difficult and time-consuming.

Our numerical experiments comparing envelope-type solvers
with recently developed sparse direct solver at NASA Langley
show that major shortcomings have been overcome, and that a
good implementation of the sparse direct solver outperforms enve-
lope-type solvers by orders of magnitude in both execudon time
and storage requirements.

MULTIGRID PRINCIPLES

Since the pioneering work of Fedorenko (1962), multigrid Lit-
erature has grown in astonishing rate. This is not surprising since
the multigrid-like methods possess the highest rate of convergence
among the iterative techniques for solving symmetric positive def-
inite linear systems. The principal idea of multigrid consists of
capturing the oscillatory response of the system by means of
smoothing, whereas remaining lower frequency response is
resolved on the auxiliary coarse grid.

To clarify the basic priciples we will denote the auxiliary grid
functions with subscript 0. For example, u, denotes the nodal
values of the soluton in the auxiliary grid, where
U € R™, m<n . We also denote the prolongation operator from
the coarse grid to the fine grid by Q :

Q:R®= 5 Re (2)
The restricdon operator QT from the fine-to-coarse grid is
conjugated with the prolongation operator, i.e.:
Q" :R® s R™ (3)
The superscripts are reserved to indicate the iteration count.
Let ' be the residual vector in the i -th iteration defined by
ri= f- Ayl (4)

where ui - is the current approximation of the solution in the i -
th iteration.

The problem of the coarse grid correction consists of the mini-
mization of the energy functional on the subspace R® ,ie.

(A s+ Qui), ut+ Qub) - (£ ui+ Qui) = minuh € R (5)
where (.,.) denotes the bilinear form defined by

1 a
(u,v) = ;v g, vVER (6)

j=l

A direct solution of the equation (5) yields a classical two-grid
procedurs. Alternatively, one may introduce an additional auxii-
iary grid for u, and so forth, leading to a natural multi-grid
sequence. To fix ideas we will consider a two-grid process result-
ing from the direct minimization of (5} which yields

Aguy = QT (£ - Aud) (7)

where A = QTA_Q -is the restriction of the matrix A . The
resulting classical two-grid algorithm can be viewed as a two-step
procedure:

a) Coarse grid correction

rf = f- Ayl
i S
up = 4 Qr! (8)

@' = ul+Qu,

where 4! is a partial solution obtained after the coarse grid cor-
rection. Even though the auxiliary system of equations is much
smaller than that of the source problem, it’s solution for large
scale systems can be most efficiently obtained by means of sparse
direct solver.

b) Smoothing

uwitl = i+ P (F- ATl (9)
where P is a smoothing preconditoner. For example, if the Jacobi
method is employed for smoothing, then

P = w(diag(A)) (10)
where o is a weighting factor. A more efficient preconditioner of
the form of Incomplete Cholesky factor is described in the next-
section.

To assess the rate of convergence we can associate the error
vectors e, & defined by

el = u-ul gi = y-gi (11)

where u is the exact solution of the source problem. Then the

error resulting from the coarse grid correction (8) can be cast into
the following form

&= (I - QA5‘QTA) ¢l (12)

where I is the identity nxn matrix. Combining equations
(9).(11), the influence of smoothing on error reduction is given by:

eitl = (I-P"A)éi (13)
and from the equatons (12), (13) the error vector of the two-grid



process with one post-smoothing iteration can be expressed as:

gi+l = (I_p‘lA)([_QAalQTA)ei {14)
Denoting
G=1-P"'A
T (15)
T=I-QA;!Q A

equation (14) can be rewritten in the following concise form

ei+! = GTe! (16)
Itisessentialtonotethat T and S = I-T are A -orthogo-
nal projectors, namely:

(ATw, Sv) = Vw,v € Rn {17)
M3 = 1T + 1Sl (18)

which yields that
ITl, <1 (19)

Note that the projector T eliminates the effect of the prolon-
gation operator, i.e.:

TQ =0 (20)

The rate of convergence of the two-grid method in heteroge-
neous media for one-dimensional problems has been assessed by
Fish and Belsky (1994), and has been shown to be governed by a

factor q*/ (4 - q?') . where

q= ( /dld._,)/%(dl+d._,) (21)

and d; represent the stiffnesses of the microconstituents. Note
that if the media is homogeneous and the mesh is uniform, then
d, = d, and one recovers the classical multigrid estimate, which
states that asymtotically the error reduces by a factor of three with
each new multigrid cycle. On the other hand if one phase is signif-
icantly stiffer than the other, ie. d, »d,. then the multigrid
method converges in a single cycle or very few cycles at most.

For poor conditioned problems it is necessary to accelerate the
rate of convergence of the mulngnd method Usmg (14) the reduc-
tion of errorin asinglecycle s' = ¢' ¥ -¢' san be expressed as
linear function of the residual, ie., s =M 1, where M is
termed as multigrid preconditioner. Various forms of the second-
order acceleration schemes can be expressed as follows

ST pkuk+(l_pk)uk-1+pkakM-lrk 22)
where acceleration parameters «, § are found by either (i) mini-
mizing the energy functional or Ly norm of residuals, or by(ii)

conjugate gradient method, which imposes orthogonality condi-
tion of the form

(M“AM“:“*‘, r‘) =0 Vjsk (23)

The major drawback of the multigrid method for general
unstructured meshes is the fact that it requires construction of
mesh hierarchy in the solution process. This linkage seems to be
undesirable for general purpose FE codes, unless it is utilized in

the adaptive context, where the sequence of meshes generated by
the process of adaptivity is exploited in the solution process. Alge-
braic multigrid (Ruge. 1987), on the hand, does not require formu-
lation of continuous problem, which corresponds to the given
algebraic system equations, and no grids are involved, burt as a
result of that the efficiency suffers. Instead. FEOS automatically
constructs auxiliary mesh hierarchies from the source grid by
recursively simplifying the kinematics of the source grid.

INCOMPLETE CHOLESKY PRECONDITIONERS

Perhaps one of the most efficient smoothers for multigrid-like
methods is based on Incomplete Cholesky Factorizaton. By this
technique an approximate factorization of the stiffness matrix is
introduced without generating too many fll-] ms Such an approach
leads to the factorization of the type LDLY = A-E . where
E is an error matrix which is not explicitly formed. For this class
of methods the error is introduced by either prescribing the posi-
tion of elements to be rejected (Manteuffel, 1980) or by discarding
those elements in the factor which are smaller than specified toler-
ance (Axelsson, 1983). This rejection process often leads to an
unstable factorization that may result in a nonpositive definite
preconditioner. Several remedies have been proposed including
modification of factorization by making it more diagonally domi-
nant (Manteeuffel, 1980) or by correcting diagonal elements in
the factorization process (Axelsson, 1983).

Our experience with multigrid-like methods suggests that the
simplest version of Incomplete Cholesky Factorization, which
preserves the sparsity pattern of the source stiffness matrix and
ensures its stability by means of diagonal scaling, is the most suit-
able smoothing procedure. Heavier MIC-based smoothers, which
allow partial fill-ins suffer from duplication of computadonal
effort in the sense that they are acting on the same lower fre-
quency modes of error which can be adequately captured on the
auxiliary coarse mesh

PERFORMANCE STUDIES

The performance comparisons between the FEOS, PCG with
Modified Incomplete Cholesky (MIC) preconditioner and NASA
Langley sparse direct solvers were carried out on the SPARC 10
workstation. The numerical results are summarized in Table 1.
The convergence criterion for the FEQS and PCG solvers was
selected as 1.0e-8 in the reladve residual norm. Note that the
sparse direct solver outperformed the envelope-type solver by
orders of magnitude for the problems considered, and therefore
the envelope-type solver’s results were not included in the Table.
Our numerical experimentation agenda included three 3D solid
mechanics problems (intersection of two cylinders - model 1,
inclusion problem - model 2, bracket problem - mode! 3) and two
cylindrical shell problems with thickness/span ratio of 1/100 for
model 4 and 1/300 for model 5. The finite element mesh for the
Model 3 is presented in Figure 1.
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SUMMARY

This paper describes automated tools for the analysis of three-dimensional composite
unit cells via the finite element method. These tools include an automated matched mesh
generation algorithm, a constituent mesh volume fraction adjustment algorithm, and an
iterative solver with efficient handling of the multiple right hand sides necessary for
homogenization analyses. The described algorithms are used to examine the effect of the
constituent volume fractions on the homogenized material properties. The local stresses

within a representative composite weave are also examined.

KEY WORDS: automatic mesh generation; finite element; unit cell; volume fraction;

woven composite

1. INTRODUCTION

Effective design with composite materials requires the ability to predict their behavior.
This behavior is partially influenced by the configuration of the constituents and other
small scale features such as microcracks and voids. This paper is concerned with general

automated methods allowing materials researchers and composite designers to understand




the effects of constituent geometric configurations on the functions which the material

must perform (e.g. support loads, resist deflection, transfer heat, or reflect radiation).

The large number of complex small-scale interactions in composites makes the
complete characterization of the overall behavior of composites for all permutations of
manufacturing and operation variables impractical. This has led to the development
of multi-scale approaches where overall composite properties are derived from smaller-
scale (more detailed) models of the constituents, and the effects of overall loadings are
transformed into effects on the constituents. As shown in Figure 1, the small-scale
modeling process begins with the definition of constituent phases and their significant
features, the constitutive model(s) and associated property parameters of the solid phases,
and the boundary conditions needed for the analysis. The constituent geometric features
may be given either directly as idealized geometric features, e.g. cylindrical fibers, whose
size and position are controlled by parameters ' 2 or by scanned sample data with given
discretization, noise processing and interpretation parameters 3. The constitutive model
is chosen based upon the material constituents, the environment, loading and expected
lifetime and the tested property parameters obtained. The boundary conditions depend

on the formulation of the subsequent analysis.

After a representative model has been developed, an analytical or numerical solution
technique is employed to calculate the average material properties and constituent stress
concentrations. These approaches include analytical methods based on elasticity theory.
for classical shapes (ellipsoids or circular fibers) included in infinite media. Such

methods are the Mori-Tanaka method 4, which entails a closed form solution, the Self




Consistent method >, which entails numerical root finding, differential schemes 6 which
entail solving ordinary differential equations, composite moduli bounding methods 7, and
methods based on transformation strains 8. These methods are characterized by quick
solution times, do not require complicated model generating procedures, and require only
material design parameters such as volume fractions and linear elastic moduli as input.

However, they are limited to specific inclusion geometries.

Numerical methods for solving unit cell problems are applicable to general constituent
geometries, and may be utilized wherever periodicity assumptions are valid (i.e. in
. portions of the large-scale problem domain which are not near boundaries or regions of
high stress gradients). In regions of the large-scale problem domain where assumptions
about the periodicity of the solution are not valid, localized approaches such as multigrid
techniques ® can be utilized. In areas of the large-scale model where periodicity
assumptions are valid the homogenization technique allows for great flexibility in the
choice of the included small-scale features, but at the expense of complicated model
building and meshing procedures and more computationally intensive solutions. The

1011 within the problem domain is critical

generation of valid finite element meshes
to the success of these analyses. The topological and geometrical complexity of three-
dimensional woven composite unit cells, and the need to analyze multiple unit cell models
to thimize microstructure for a given application make the ability to generéte meshes
without user intervention a préctical necessity. The difficulties inherent in generating

three dimensional finite element meshes of geometrically complex domains may be

greatly simplified by employing digital image based finite element techniques, as done




by Hollister and Kikuchi 3. This method has been shown to provide good results for the
homogenization analyses they were performing, but the poor geometric representation of
material interfaces does not directly permit reliable computation of local stresses near
constituent boundaries. In reference 2 Dasgupta er. al. determine the thermal and
thermo-mechanical properties of a woven composite using discretizations which provide
a smoother representation of constituent boundaries. However, meshes and results are
shown for only a plain weave, and their modeling and discrfatization algorithms do not
appear to be applicable to more complicated weave patterns. The unit cell model may also
be used to determine the local stresses in the woven composite, as shown by Whitcomb
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et. al. in two dimensions.

The large number of equations resulting -from the numerical modeling of three-
dimensional unit cells requires an efficient solution technique. The practical value of
detailed unit cell representations in the design process is very limited if the computa-
tional cycle for anafyzing a single microstructure entails more than a couple of hours.
Application of direct equation solution methods, including state-of-the-art multifrontal
solvers, is inappropriate due to the very dense structure of the stiffness matrix. However,
the use of standard iterative methods is questionable due to poor conditioning caused
by strong heterogeheities and anisotropies. Moreover, the need for analyzing unit cell
models for multiple forcing functions (6 in classical homogenization, 24 in higher order
homogenization theory !#) further complicates the efficient utilization of iterative meth-
ods. In this paper a multilevel solution technique developed in '3 19 is utilized for solving

the linear systems of equations arising from complex microstructures.




This paper describes a set of automated finite element modeling procedures for
performing homogenization analyses of woven composite unit cells. Sections 2 through 4
detail the description of the unit cell model, the generation of matched meshes on opposing
faces of the unit cell, and a procedure for controlling the unit cell constituent volume
fractions. Section 5 describes the solver features aimed a efficiently handling poorly
conditioned linear systems subject to multiple right hand sides. Section 6 discusses the
calculation of homogenized stiffness parameters, and section 7 discusses the determination

of local stress values in the unit cell models. Closing remarks are made in section 8.
2. UNIT CELL MODEL DESCRIPTION

The definition of the geometry of the unit cell representing the chosen composite
weave geometry is needed as input to the automated unit cell analysis. The overall shape
of the unit cell is a rectangular prism. Boundary conditions and other analysis attributes
are associated with this basic model. For example, homogenization analysis requires that
the displacement fields vary identically over opposing faces of this prism !7. However,
geometric model creation and mesh generation operations must be performed with respect
to the geometry of the constituents of the weave structure. Tﬁis weave structure is
complex, and may be comprised of matrix, fiber bundle,'and void geometries as shown
in Figure 2, and méy also contain cracks in the matrix material. Consideration of both
the basic unit cell model and the geometric model of the weave geometry components is
necessary in the modeling and analysis process. The weave characteristics and analysis
attributes of the composite being modeled may be altered to optimize the composite as

shown in Figure 3.




The schematic in Figure 3 depicts the inputs and outputs (arcs) for each function
(boxes) used to implement the automated homogenization "Solution Technique" of Figure
1. The “Geometric Modeler” (top of Figure 3) provides a non-manifold boundary
representation '® of the composite weave geometry comprising the unit cell. This
representation is comprised of both topology, which describes the relationships of the

model entities, and geometry, which describes the shape of the model entities.

The “Matched Mesher” function (middle right of Figuré 3) uses the geometric model
information and constraints dictated by the periodic boundary conditions to automatically
create a three-dimensional mesh of the composite weave. A set of “Mesh Copy Op-
erations” is used to create matching surface mesh topology and geometry on opposing
faces of the unit cell. The mesh matching requirements are specified via the rectangular
prism “Unit Cell Template” (middle left of Figure 3), and are independent of the com-
posite weave geometric model. The topology of the composite weave geometric model
is associated with the topology of the unit cell template by the “Classify on Unit Cell”
function shown in Figure 3. After the mesh has been generated, mesh queries and ma-
nipulations are performed via the “Generic Mesh Database Operations” !° indicated on

the right side of Figure 3.

The unit cell témplate is also used to automatically “Identify Moveable Constituent
Topology”, as indicated in the center of Figure 3. This function determines the topological
entities of the given “Target Constituents” in the composite weave model for which the
associated mesh may be altered to “Adjust Constituent Mesh Volumes” to the given

“Target Volume Fractions” by the subsequent function shown in Figure 3.




The “Material Property” function (lower left of Figure 3) forms the constitutive rela-
tions for each constituent in the composite. The necessary constituent material properties
are selected from a relational material property database indexed by compound, form,
manufacturer, environment, or other factors. Altematively, the properties are computed
from a lower scale analysis of the average properties of micro-constituents. Complete
definition of material properties also requires inter-scale transformation geometries to
provide local coordinate systems orienting non-isotropic material models. Data from
the geometric modeler is used to associate the material properties (and other analysis
attributes 2%) with the geometric model topology. Associating these properties with the
geometric model makes them independent of the mesh, and the mesh can therefore be
altered without requiring their respecification.

The “Kinematic B.C. Attributes” function (lower right in Figure 3) specifies the
appropriate boundary conditions for the homogenization analysis. These attributes and
the constitutive relations are associated with the correct finite element mesh entities
and formatted as necessary for the finite element solver by the “Associate and Format”
function shown at the lower center of Figure 3. The resulting system of equations is
provided to the finite element solver (“FE Solver” at the bottom of Figure 3), and the

resulting solution data is supplied to appropriate post processing routines.
3. MATCHED MESH GENERATION

Since the homogenization modeling is performed via the finite element method, the
necessary periodic boundary conditions are specified to the equation solver in terms

of nodal displacement requirements (multi-point constraints). Since the displacement
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solution field is not constant over a cell face, the displacement of a given node, referred
to as the subordinate node, on one face of the unit cell is defined as a function of the
displacements of specific nodes, referred to as control nodes, on the opposing unit cell

face. That i1s

ui= Y au; ()

where u; denotes the displacements of the ith subordinate node, u; denotes the dis-
placements of the ; th control node, a; are weighting values, and Neon is the number of
control nodes associated with the current subordinate node. The displacement function
for a given node is written in terms of the shape functions of the element face which
contains the projection of the given node on the opposing unit cell face, as shown in
Figure 4. This approach requires an expensive search process to determine within which
element faces the projected node lies. The projected point must also be located in the
parametric ({1, €2, §3) space of the element face to express the displacement of the subor-
dinate node in terms of the control nodes. The complexity of this calculation is increased
if higher order polynomial element geometry interpolations are utilized.

Specification of the periodic boundary conditions is substantially simplified if the
finite element nodes on opposing unit cell faces match. In this case the periodic boundary

condition for a given subordinate node reduces to
U =Y 2)

where u; is the displacement of the sole control node. With a priori knowledge of

the correspondence between nodes on opposing faces of the unit cell, no searching is




required and it is not necessary to locate a projected point in real space within the

parametric space of an element face.

Matched meshes are generated by first discretizing the weave geometric model outer
boundary entities which are defined as “control” entities, and then copying the meshés
to the matching “subordinate” weave geometric model entities. In order to generate
a matched mesh of the weave geometric model, it is therefore necessary to identify
the control-subordinate relationships of the weave geometric model outer boundary
topological entities. For convenience, the outer boundary of the weave geometric model
is denoted as &M. The control-subordinate relationships are determined by associating
the topological entities of dM wifh the predetermined control and subordinate topology

of the unit cell template.

One unit cell template face of each opposing pair of faces is specified as the control
face, and the other is specified as the subordinate face. One of the three such pairs
of faces is indicated 6n the unit cell template shown in Figure 5(a). Periodicity in each
direction normal to the faces of the unit cell requires that parallel edges of the box-shaped
unit cell template undergo the same variations in displacement and must have identical
meshes. One unit cell template edge in each group of four parallel edges is specified as
the control edge, and the other three are designated as subordinate edges. One of the
three such control-subordinate edge groups is shown in Figure 5(a). All eight vertices of

the unit cell undergo the same displacement, and (trivially) must have identical meshes.

Each @M face associated with a control face of the unit cell template is identified as

" a control face, and the matching M face is identified as a subordinate face, as shown for




a typical pair of weave geometric model faces in Figure 5(b). If a M edge lies within a
control face of the unit cell template, then it has one matching M edge lying within the
opposing subordinate face of the unit cell template. If a 9M edge lies on a control edge
of the unit cell template, it has three matching edges lying on the parallel subordinate
edges of the unit cell template, as shown for one group of dM edges in Figure 5(b). The

OM vertices similarly inherit control-subordinate designations.

Generating meshes in a hierarchic manner (i.e. meshing vertices first, then edges,
faces, and volumes) allows the periodicity requirements to be easily satisfied during
the meshing process, since discretizing the weave geometric model face boundaries first

ensures that the necessary matching meshes can be generated in their adjacent faces.

The control M edges are meshed first, as shown in Figure 6(a). As described
in reference 2!, the edge meshing is done such that the resulting discrete edges are of
approximately the same size as requested by the user. The meshes on the control edges
are then copied to the subordinate weave edges. This is done by first creating a new
subordinate mesh vertex as shown in Figure 6(b). A new mesh edge is then created and
classified on the subordinate weave edge, as shown in Figure 6(é).

The weave faces are then meshed by a surface meshing algorithm which discretizes

the model faces in their parametric spaces 2!

. The weave face boundary mesh is first
copied into the parametric space, as shown for the face  with four curved edges in Figure
7(a). The surface mesh is then created using a Delaunay insertion method as illustrated in

Figure 7(b). After the surface mesh has been created in the parametric space, it is copied

back to the weave face in the real space by obtaining the corresponding zyz coordinates
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for each of the mesh vertex parameter values as shown in Figure 7(b). The matching
mesh on the subordinate weave face is created by also copying the temporary mesh to

the corresponding subordinate weave face.

The region meshing process is comprised of three steps %23, In the first step an
underlying variable level octree is created to reflect mesh size control information during
the region meshing procedure. The octants residing far enough inside the model interior
are then meshed using templates. Finally, a face removal procedure is used to connect

the surface triangulation to the interior elements.

4. CONTROL OF CONSTITUENT VOLUME FRACTIONS

" The efficiency of the analysis process is increased by using the fewest number of
degrees of freedom which can achieve the desired accuracy for the requested parameters.
In finite element analyses the solution accuracy is affected by both discretization error
and geometric approximation error. Discretization error is caused by the projection of
the solution field into a finite dimensional space. If this error is dominant, then the
discretization must be suitably refined to improve solution accuracy.

Geometric approximation error is caused by the piecewise approximation of curved
model geometry. The presence of curved geometries in composite microstructures is
illustrated by the crross-sectional view of a planar weave composite shown in Figure
8. The matrix and fiber bundle geometries are clearly visible in this image, as are the
individual fibers comprising the fiber bundles. The weave geometric models presented
in this paper consist of fiber bundle and matrix constituents only. The smaller-scale

modeling of the fibers within the bundles is done via the Mori-Tanaka method. Since the
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fiber bundles are convex in cross-section and are curved to form the weave, geometric
approximation creates errors in the constituent volume fractions calculated from the finite

element mesh. The mesh constituent volume fractions, CCF £ , are defined as

VFE
CCFE — _cons (3)
Veell

where VEE is the volume of the elements classified inside the constituent regions of
the geometric model, and V,.; is the total volume of the unit cell. The errors in the
mesh volume fractions can be sizeable, as illustrated by the circular geometric model of
radius r in Figure 9(a). The circle is discretized such that there are four finite element
mesh edges of equal length around the circumference as shown in Figure 9(b), and each
edge is of length V2r. The resulting mesh area is 2r2, and the “lost” area not contained
within the mesh is 7% — 2r2, as indicated by the shaded portions of Figure 9(b). The
area error of the mesh is therefore —36%.

In homogenization analyses, the results presented here indicate that the CCF £ values
influence the evaluation of the homogenized material parameters more strongly than
does the discretization error. The CF% errors must therefore be reduced to improve the
analysis accuracy. There are several methods by which these errors may be reduced.
The simplest method consists of refining the mesh to improve the approximation of the
model geometry. This process dramatically increases the number of degrees of freedom
in the domain, as illustrated by the meshes of a base one planar weave geometric model
shown in Figure 10. Only the mesh faces classified on the interior fiber bundle surfaces -
are shown in these figures. The mesh in Figure 10(a) contains 21,850 elements and 4,608

nodes. The mesh fiber bundle volume fraction, C{ £, of this mesh is 0.2527, which is in
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error by -19.4% when compared to the geometric model fiber bundle volume fraction of
0.3137. The mesh in Figure 10(b) was created through uniform refinement and contains.
154,020 elements and 28,858 nodes. The fiber bundle volume fraction is 0.298761, which
is in error by —4.8%. The approximation of the fiber bundle volume fraction by the finite
element mesh improved, but still underestimates the fiber bundle volume fraction of the
geometric model, and the nﬁmber of degrees of freedom in the domain increased by a
factor of greater than 6. The memory requirements and large increases in solution time
for the highly refined meshes needed to adequately approximate the fiber bundle volume

fraction make this an expensive method.

Another approach for reducing the errors in CCF E values entails making adjustments
to the geometric model such that the constituent volume fractions of the geometric model
are higher than the constituent volume fractions of the actual composite material. The
constituent volume fractions of the finite element mesh generated within this model then
more closely approximate the constituent volume fractions of the composite material.
This method requires iterations of the modei construction and mesh generation processes
to reduce the CF £ errors to a given level. Further, since CZ% values are a function of
discretization size, meshes of different degrees of refinement require the construction of

different geometric models to obtain the same C£% values.

The chosen method for reducing the C/'£ errors involves the modification of an
existing mesh. This method begins with an initial mesh which is valid and of acceptable
element shape quality, and relocates the mesh vertices classified on the surfaces of the

constituents under consideration to correct CF£ values of those constituents. The mesh
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vertices are relocated in a manner such that the validity and quality of the mesh is
maintained. In the current implementation, the quality of the mesh is measured by
the largest dihedral angle 24, Although this Cf'Z adjustment method is an iterative
procedure, it does not require the creation of a new finite element mesh for each iterative
step. Instead, the same mesh topology is used throughout the process with changes being

made only to the locations of specific mesh vertices.

The values of the desired mesh bundle volume fraction, ?_b, and the bundle volume
fraction of the existing mesh, C{ £ are utilized to determine how the mesh should be

altered. Since the area A of an ellipse is given by 2°

A= / r(8)*df @)

where r is the distance from the bundle centerline to a point on the bundle surface and § is
the angular measure around the ellipse, the volume of a given fiber bundle is proportional

to the square of the radius of the elliptical bundle cross-section
Vi o« (8, s) (5)

where V} is the volume of the bundle, and s is a parametric measure along the bundle
centerline. Using equation (5), the new bundle radius R required to achieve the desired

fiber bundle volume Vj is expressed as

R(9,s) x /7, ©

The new bundle radius R is therefore calculated as a function of the current bundle radius

R(0,s) =1/ L;bk r(,s) : _ (7
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If all of the fiber bundles in the geometric model are of the same cross-sectional geometry,

equation (7) may be expressed in terms of the volume fraction measures Cy and CbF E
R(8,3) = @ r(0,s) (8)

where ® = /C}/ C’bF E is the bundle volume adjustment factor.

The new position of each mesh vertex on the bundle surfaces is calculated as a
function of the bundle volume adjustment factor, ®, as illustrated for a typical ellipsoidal
bundle cross-section in Figure 11. The current positions z; of the vertices in the inscribed
surface discretization of the bundle cross-section are located distances r; from the center
of the bundle cross-section, as shown in Figure 11(a). If the bundle volume adjustment
factor is greater than one, each of the mesh vertices is located radially outward from
its current position to its new location X; at a distance R; from the bundle center, as
shown in Figure 11(b). The coordinates to which the vertex is relocated are therefore

calculated as
X=z+(®-1)r 9

where r denotes the vector from the bundle center to the current location of the vertex.
Scaling the bundle cross-section by @ in this manner maintains the original shape of the
bundle cross-section, as can be seen by examining the aspect ratios of the meshes in

Figure 11. The aspect ratio o of the original discretization is calculated as

ap = —1 (10)
T2 cos 6 ‘

and the aspect ratio ajy of the adjusted discretization is calculated as

ajr = F
o R5 cos 6s

(1D
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Substitution of equation (8) in equation (11) results in

r .
ajp = ——— (12)

ro cos 07

After moving a given vertex to the new position determined from equation (9), the
validity and quality of the mesh is evaluated. If any of the dihedral angles affected by
the vertex movement exceed the largest dihedral angle in the original mesh, a new vertex
- position is determined by bisecting the distance the vertex wlas rﬁoved and again checking
the quality of the mesh. The vertex relocation procedure is repeated until a location is
found for which the mesh quality does not degrade. The vertex is returned to its original'
location if after five distance bisections no location can be found for which the quality of
the mesh does not degrade. This process permits the bundle surface mesh to be altered
anisotropically if the movement of mesh vertices is constrained in some manner. Such
constraints are caused by the proximity of geometric model entities, or by the topology

and geometry of the mesh surrounding the fiber bundle surface.

After the mesh vertices on the bundle surfaces have been moved to their new posi-
tions, a constrained Laplacian smoothing 29, utilizing a specific element shape parameter
27 is employed to improve the shapes of the altered elements. The surface and edge
smoothing techniqués usually employed in automatic mesh generation algorithms would
pull the vertices classified on the bundle surfaces back to the surfaces of the geometric
model, thereby restoring the original constituer;t mesh volume fractions. Therefore, in the

current implementation only the mesh vertices classified on the interior of the geometric

model regions are subjected to smoothing operations.
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The following 'example demonstrates the ability of the algorithm to adjust C,f Etoa
prescribed value. The geometric model for this example was created with the Shapes™
28 geometric modeler. The example consists of a unit éell containing a single cylindrical
fiber bundle. The unit cell is of height A = 2, width w = 2, and length [ = 5. The
fiber bundle is of radius r = 0.5. The exact bundle volume fraction, C}, is 0.19635.
The initial mesh of the unit cell model is shown in Figure 12. The exterior of the
mesh is shown in Figure 12(a), and the interior mesh faces on the surface of the fiber
bundle are shown in Figure 12(b). The C’f £ of this mesh is 0.13421, which represents
a -31.6% error. The mesh volume fraction correction algorithm was then used to adjust
the mesh to the correct bundle volume fraction. The exterior faces of the adjusted mesh
are shown in Figure 12(c), and the interior mesh faces classified on the surface of the
bundle are shown in Figure 12(d). In this case the topology and geometry of the volume
mesh outside of the bundle region prevented some mesh vertices from moving to the full
extent of the relocation prescribed by the volume fraction adjustment algorithm without
degrading the mesh quality. Three iterations of the mesh volume fraction correction
procedure were required to raise the bundle volume fraction to within 1% of Cy. The
value of the mesh volume fraction at the end of each of the three iterations is listed in
Table 1. Section 6 contains examples of composite weave geometries where similar

improvements were obtained.
5. ITERATIVE SOLUTION OF UNIT CELL PROBLEMS

The Generalized Aggregation Method (GAM) is utilized for solving the unit cell

problems. These problems are characterized by a large system of linear equations with
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Table 1. Mesh bundle volume fraction and percent error at each iteration
of the volume fraction correction of the single fiber bundle example.

Mesh Move Iteration Mesh Bundle Mesh Bundle Volume
Volume Fraction Fraction Error (%)
(desired = 0.19635)

initial mesh 0.13421 -31.6

1 0.18209 -7.3

2 0.19369 -1.3

3 0.19579 -0.3

multiple right hand sides and multi-point constraints, and may be written as

QTKQu, =Q7f (13)

where I_§’ is the unit cell stiffness matrix, f is a forcing matrix given by

i=‘AEQ“ (14)

B is a strain-displacement matrix, 6 is the unit cell domain, D is the small-scale
constitutive tensor, and () is the multi-point constraint matrix relating the control degrees

of freedom u, to the set of all degrees of freedom u as

u=u, (15)

Further details are contained in !°.

5.1 SOLVER DESCRIPTION

GAM is a multilevel solution scheme based on the multigrid philosophy, which
captures the lower frequency response by solving an auxiliary coarse model, whereaé
the higher frequency response is resolved by smoothing on the source grid. As such

GAM possesses an optimal rate of convergence by which the CPU time grows linearly
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with the problem size. Unlike the multigrid method GAM does not require construction
of auxiliary grids. Furthermore, because of the adaptive control of the structure of
the preconditioner GAM is insensitive to problem conditioning in terms of number
of iterations. In GAM the auxiliary coarse model is directly constructed from the
source grid by decomposing the whole set of nodes into non-intersecting blocks to be
referred to as aggregates, and then for each aggregate assigning a reduced number of
degrees of freedom. By doing so one reduces the dimensiona.lity of the source problem,
while maintaining the compatibility of the solution. Theorems quantifying the optimal
approximation properties aimed at ensuring that the coarse model will effectively capture
the lower frequency response of the source system and at the same time will be sparse

~ and rapidly computed have been described in 15,
5.2 MULTIPLE RIGHT HAND SIDES

A combination of two mechanisms is employed to provide a rapid solution for linear

systems of equations (13) with multiple right hand sides:

1. Construction of the preconditioner aimed at reducing the overall cost of the itera-
tive process at the expense of increasing the computational cost of computing the
preconditioner;

2. Acceleration of the GAM scheme with the block conjugate gradient method.

5.2.1 GAM PRECONDITIONER FOR PROBLEMS WITH
MULTIPLE RIGHT HAND SIDES

One of the key aspects of the GAM scheme is a selection of the coarse model cut-

off frequency parameter +, below which all the eigenvectors of the eigenvalue problem
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on the aggregate are included within the prolongation operator. In order to make this
parameter dimensionless, the eigenvalue problem on each aggregate a is formulated in

the following manner:
A:aéa :/\aQaéa (16)

where D® is the diagonal of K°.

The value of the parameter v determines the effectiveness of coarse grid correction.
In the limit as v — max )\_“, the auxiliary problem captures the response of the source
system for all frequencies and therefore the two-level procedure converges in a single
iteration even without smoothing. On the negative side, for large values of 7, the
eigenvalue analysis on each aggregate becomes prohibitively expensive and the auxiliary
matrix becomes both large and dense. At the other extreme, in the limit as v — 0 the
prolongation operator contains the rigid body modes of all the aggregates only, and thus

the auxiliary problem becomes inefficient for ill-posed problems.

For problems with multiple right hand sides the value of 4 should be increased to
reduce the number of iterations, and consequently to reduce the overall computational

cost.

5.2.2 BLOCK CONJUGATE GRADIENT ACCELERATOR

The system of linear equations with s load cases given in (13) can be expressed in

a block structure as

=
|<
I

|3

an




where U = [ug,Us, ..., U], £ = {L’iz’ig] and y;, f, are the itk load vector and
the corresponding solution, respectively. The matrix K € R™*" is the global stiffness
matrix which is symmetric, positive definite and sparse.

The forcing functions are orthonormalized using the Gram-Schmidt procedure to
obtain F(F = F H,,) and to ensure that the resulting set of forcing functions is linearly
independent

i-1

-0 0 ) -
§F,=F-> I, i=L..,s (18)
=1

I

where

v = (Zq)Tﬁ 19)
and §; is the set of parameters which normalize L The original problem K U = F can
then be transformed into KU = F where F = F H,, and H,, is an upper triangular

matrix of the form:

-51 "}’12 “ee PN ")/12 ]
82 :
H,= : (20)
0 53—1 7:—1 '
o3 68 -

The block conjugate gradient acceleration scheme described below utilizes the GAM

cycle as a preconditioner. To clarify ideas consider the following energy functional
BU) = [P1(w1) Pa(us) - .- Ps(u,)] 20

where®;(u;) = %Q,TK_u, - g:f L The corresponding block residual matrix R; € ®"° at

the it* step is R; = F — KU, and the corresponding solution U;; € R"** is defined as

Qi-}-l =U; + Zi+1_44' (22)
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where V; € R™** spans the subspace of search directions, and A; € R°** is the matrix

representing the step length determined by the minimization

08 (U; + Vi A
0A;

) =0 (23)
which yields L-T_H' R; ., = 0. The subspace V,, is subsequently constructed by
Vin=4;+V.B; (24)

where the parameter matrix B; € R°*° is determined from the block conjugacy condition

K,TH KV, =0, and Z; is the predictor from a single GAM cycle. The complete algorithm

is summarized below.
Step 1: Initiation

0 B =

[
I
I~

_Bi():Q

ZO - Q
Step 2: Do i=0, 1, ... until all right hand sides converge

y
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Convergence is checked for each right hand side. If one of the right hand sides converges,
it is removed from the iterative process. Once all the right hand sides have converged,

~ the final solution is recovered as

H (25)

—_m

U=

|<J

5.3 MULTIPLE POINT CONSTRAINTS

The GAM scheme can deal with multi-point constraints in a conventional way if all
the elements containing at least one “subordinate” node form a separate aggregate. Each

multi-point constraint can then be represented as follows:
ug=Tu, (26)

where u, are the subordinate” degrees of freedom, and T is a transformation matrix

representing the multi-point constraint data:

y=[ ]&;=Q_Es ' 27

I~
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6. CALCULATION OF HOMOGENIZED STIFFNESS PARAMETERS

The effect of C’,jp E on the homogenized stiffness parameters of a composite material is
easily seen in an analysis of a single bundle unit cell. This model consists of a cylindrical
fiber of radius » = 0.5 embedded in a block of matrix of length | = 2, width w = 2, and
height # = 2. The isotropic matrix material modulus and Poisson’s ratio were chosen as
6.89 msi and 0.33, which are representative of Titanium. The isotropic bundle material A
modulus, shear modulus, and Poisson’s ratio were chosen as 37.9 msi, 15.7 msi, and 0.21

which are representative of a silicon carbide fiber.

A series of meshes of increasing levels of uniform refinement was generated, as
~ shown in Figure 13. The coarsest mesh, shown in Figure 13(a), contains 93 vertices
and 284 elements. The mesh shown in Figure 13(b) contains 576 vertices and 2,549
elements. The mesh shown in Figure 13(c) contains 4,156 vertices and 21,951 elements.
The finest mesh, shoWn in Figure 13(d), contains 20,615 vertices and 110,638 elements.
Homogenization anaiyses were performed with each of the four meshes, and also with
the volume fractions of the four meshes corrected to within +0.5% of the correct volume

fraction for the geometric model.

The most relevant stiffness parameter for the single bundle model is the parameter
corresponding to the axial stiffness of the bundle. For the model under consideration the
fiber bundle axis is aligned with the z direction, making the G35 term of the homogenized
material stiffness matrix G of greatest relevance. The values of G33 computed using the
various discretizations were compared to G33 computed with the finest mesh adjusted to

0.0% bundle volume fraction error.
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Table 2. Mesh bundle volume fraction and homogenized material
stiffness differences for the discretizations shown in Figure 13.

Number of Mesh Bundle | Mesh Bundle Gaz (x107 psi) | Gs3
Vertices Volume Volume Fraction Difference
Fraction Error (%) (%)
93 0.14998 -23.61 1.4906 -8.79
93 0.18409 -6.24 1.5976 -2.24
93 0.19263 -1.89 1.6244 -0.6
93 0.19623 -0.06 1.6357 0.09
576 0.18440 -6.09 1.5972 -2.26
576 0.19351 -1.45 1.6257 -0.52
576 0.19630 -0.02 . 1.6345 0.02
4,156 0.19334 -1.53 1.6248 -0.57
4,156 0.19633 -0.01 1.6342 0.00
20,615 0.19558 -0.39 1.6318 -0.15
20,615 0.19635 0.00 1.6342 0.00

The percent differences between the G33 values and the (33 value of the finest mesh
are listed in Table 2. This data may be examined in two manners. The first entails
viewing the homogenized axial stiffness parameter differences as a function of the CbF £
error. The Cf'F of each mesh was adjusted to match the initial cf E values of the finer
discretizations and also to C. The change in the value of the axial stiffness parameter
for a given mesh corrected to different C’{ E values shows the effect of improving the
geometric approximation only. This data shows that all of the discretizations adjusted to
within £0.5% of C} produced nearly the same axial stiffness parameter. In particular,
the coarse discretization and the fine discretization produced results which differed
by only 0.09%. This result indicates that it is possible to use coarse discretizations

and achieve accurate results if the geometric approximation error is controlled. This
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shortens the analysis cycle since it is much quicker to generate coarse discretizations and
also much quicker to perform the homogenization analysis on the coarse discretization.
The CPU time required for the mesh generation and homogenization solution of the
coarse discretization was 444 times faster than the time required for the most refined

discretization.

Examining the homogenized axial stiffness differences for meshes corrected to within
+0.5% of the same CbF E shows a small change in this parémeter with increasing mesh
refinement. When all the discretizations were corrected to within £0.5% of Cj, changing
the number of mesh vertices by two orders of magnitude resulted in only a 0.09% change |
in the homogenized axial stiffness parameter estimate. In contrast, changing the volume
fraction of the coarse discretization by less than 2% resulted in a 0.69% change in the
homogenized axial stiffness parameter accuracy, indicating that the analysis of this model

is affected more by the geometric approximation error than by the discretization error.

The second example consists of a base two satin weave composite 2°. The parameters
used to construct the geometric model of this weave were taken from a series of
micrographs of a representative sample of the composite. The design target bundle
fraction was 0.55. The matrix is an amorphous glass composed of silicon, oxygen,
and carbon. The métrix was modeled as a transversely isotropic material with degraded
properties to represent the through-thickness matrix cracks in the as-processed composite.
The axial Young’s and shear moduli of the matrix are 11.5 msi and 4.0 msi. The transverse
Young’s and shear moduli are 8.1 msi and 3.3 msi. The Poisson’s ratio is 0.26. These

values will be compared with specimen test data in future work 3°. The fibers are a
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ceramic material. The axial Young’s and shear moduli of the fiber bundles are 16.6 msi
and 6.55 msi. The transverse Young’s and shear moduli of the fiber bundles are 16.2 msi

and 6.52 msi. The Poisson’s ratio of the bundles is 0.24.

Meshes of varying amounts of uniform refinement were generated within the con-
structed geometric model. The coarsest mesh, (Figure 14) contains 2,380 vertices and
11,050 elements, the mesh created with one level of refinement (Figure 15) contains
10,475 vertices and 52,509 elements, and the finest mesh (Figure 16) contains 62,436
vertices and 338,253 elements. Meshes of each of the three levels of uniform refinement
were also -generated with the mesh volume fraction corrected to within £0.5% of the
target volume fraction of 0.55. The mesh faces classified on the interior fiber bundle
surfaces of each of th¢ volume fraction corrected meshes are shown in Figure 17. The
number of mesh vertices and mesh volume fraction data of all of the meshes are listed

in Table 3.

Homogenization analyses were performed and the in-plane stiffness parameters were
examined. For the modeled composite weave the in-plane fiber bundle directions
correspond to the z and z axes, with the y axis normal to the plane of the composite.

The in-plane material parameters are therefore the values of G11, G33, Gss, and G3.

The homogenizéd stiffness parameters were compared to the values calculated using
the finest discretization corrected to 0.17% C,fF £ error. The in-plane normal stiffness
parameter data determined from these analyses are shown in Table 3, and the in-plane:
shear and Poisson effect stiffness parameter data are shown in Table 4. The values for

the coarsest and finest discretizations differed by at most 1.64% when adjusted to within
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Table 3. Mesh sizes, mesh bundle volume fractions, and in-plane normal homogenized stiffness
parameter values of the discretizations of the base two satin weave geometric model.

Number | Mesh Mesh Bundle | Gy Gy G3 Gss
of Bundle Volume (x107) | Difference | (x107) | Difference
Vertices | Volume Fraction Error (%) - | (%)
Fraction (%)
2,380 0.3905 -29.00 1.3099 |-11.5 1.3085 |-11.6
2,380 0.4460 -18.91 1.3651 |-6.54 1.3636 | -6.60
2,380 0.4593 -16.50 1.3783 |-5.64 1.3769 | -5.69
2,380 0.5526 0.47 1.4715 | 0.74 1.4688 | 0.60
10,475 0.4441 -19.25 1.3582 |-7.01 1.3570 | -7.05
10,475 0.4594 -16.5 1.3734 | -5.97 1.3723 | -6.00
10,475 0.5515 0.28 1.4649 |0.29 1.4635 ]0.24
62,436 |0.458 -16.7 1.3690 |-6.28 1.3677 |-6.31
62,436 |0.5509 0.17 1.4607 | 0.0 1.4600 | 0.0

Table 4. Mesh sizes, mesh bundle volume fraction errors, and in-plane
shear and Poisson effect homogenized stiffness parameter values of
the discretizations of the base two satin weave geometric model.

Number Mesh Bundle | Gss G55 Difference | G13 (713 Difference
of Volume (x10%) | (%) (x108) | (%)
Vertices Fraction Error

(%)
2,380 -29.00 4.5536 -8.05 3.7119 -12.94
2,380 -18.91 4.7007 -5.07 3.9193 -8.08
2,380 -16.50 4.7387 -4.31 3.9694 -6.91
2,380 0.47 5.0334 1.64 4.3233 1.39
10,475 -19.25 4.6717 -5.66 3.8825 -8.94
10,475 -16.5 47115 -4.86 3.9399 -7.60
10,475 0.28 : 4.9753 0.47 4.2853 0.50
62,436 -16.7 4.6904 -5.28 3.9182 -8.11
62,436 0.17 4.9520 0.00 4.2639 0.00
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+0.5% of the correct bundle volume fraction.

There is also little change in the stiffness parameters with large changes in the
number of degrees of freedom in the model, indicating that the homogenization analysis
is affected more by the amount of geometric approximation error than by the amount

of the discretization error.

The results of this example again show that it is possible to achieve accurate
homogenization results with coarse finite element discretizations if the CFE values are
adjusted to the correct values. The total CPU mesh generation and solving time required
for the coarsest discretization was 44 times faster than the time required for the finest

discretization.

7. DETERMINATION OF LOCAL STRESSES

A thorough analy;is of a given composite weave must also include the calculation of
the local stresses in the weave which result from loadings on the larger-scale homogenized
material. These local values aid in the design of composite microstructure by indicating
areas of high stress which may lead to failure of the composite. The meshes generated by
the procedures described in this paper conform to the model geometry, and are therefore

capable of producing reliable local stress data.

The local unit cell stresses corresponding to the strain field £ existing at a given

point in the larger-scale model are given by

(28)
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where g; are the stresses at the ¢** integration point in the unit cell model, and A; is the
stress concentration matrix relating the strain field at a given point in the macroscopic

model to the stresses at the i* integration point in the unit cell model 3!.

The following example of local stress calculation uses the base two satin weave
composite unit cell of section 6. The homogenized material stiffness parameters were
used to calculate £ corresponding to a 100 ksi uniaxial stress in the x-direction. This

direction corresponds to the warp direction of the unit cell.

The results of applying equation (28) to every integration point in the coarse mesh
adjusted to 0.47% C’,f E error (shown in Figure 17(a)) are shown in Figure 18. This figure
represents an éxploded view of the unit cell, with the groups of elements comprising the
matrix (at the left), warp bundles (at the top), and weft bundles (at the bottom) separated
for clarity. Linear elements were used for the homogenization analysis of this example,
and the elements in this figure are colored according to the values of the maximum
principal stress calculated at their single integration points. The correspondence between

the colors and the stress values is shown by the color bar at the top of Figure 18.

The stresses in the warp bundles show concentration “bands” near the crossovers
where the warp and weft bundles are woven together. This is due to the load carrying
capacity of bundles being reduced when their axes do not align with the loading direction,
and the load therefore being transferred to the neighboring bundles which are aligned in
the loading direction. The matrix material shows bands of stress values due to additional
reinforcement by the transverse stiffness of the weft bundles. The peak stress in the

warp bundles is 148.0 ksi.
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The medium mesh (Figure 17(b)) adjusted to 0.28% C{ £ error was also analyzed
to examine the effect on the peak stress. The local stresses calculated with the medium
mesh (Figure 19) exhibit the same characteristics as the coarse mesh. The peak stress

in the warp bundles is 160 ksi.

8. CONCLUSIONS

This paper presented a system for the efficient three-dimensional homogenization
analyses of complex composite materials. These capabilities include a matched meshing
algorithm which simplifies the specification of periodic boundary conditions, and an
iterative solver algorithm capable of efficiently handling the multiple right hand sides
required for homogenization analyses. An algorithm was also developed to correct the
mesh volume fraction, and the effect of the mesh volume fraction error on the values
of homogenized material stiffness parameters was shown to be greater than that of the
discretization error. Acceptable homogenization results may therefore be obtained with
coarse discretizations if the mesh volume fraction is controlled. The reliable calculation
of local stresses permitted by the mesh conforming to the model geometry was also

demonstrated.
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Figure 1. Schematic of small-scale composite thermo-mechanical modeling process.
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Figure 5. Determining control-subordinate relationships for the weave
geometric model. (a)Typical relationships on the unit cell template.
(b)Corresponding relationships on the weave geometric model.
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Figure 6. Edge meshing procedure. (a)Control edge is meshed.
(b)Mesh vertices from control edge are copied to subordinate weave
edge. (c)New mesh edge is created on subordinate weave edge.
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Figure 7. Weave Face meshing. (a) Boundary mesh is copied into the
parametric space. (b) Delaunay insertion method is used in the
parametric space, and face mesh is copied back into the real space.
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Figure 8. Micrograph of a planar weave composite.
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Figure 9. Mesh volume error example. (a)Circular
geometric model of radius r. (b)Inscribed mesh.
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Figure 10. Solid mesh of base one planar weave model.. Only mesh faces on interior bundle
surfaces are shown. (a)Coarse mesh of 21,850 elements. (b)Fine mesh of 154,020 elements.
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- Figure 11. Cross section of an ellipsoidal fiber bundle. (a)Inscribed
discretization, and distance to mesh vertex. (b)Distance to relocated vertex.
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(b)

(©) (d)

. Figure 12. Single fiber bundle example meshes. (a)Exterior mesh faces of initial mesh
(31.6% bundle volume fraction error). (b)Initial mesh faces classified on interior fiber
bundle surface. (c)Exterior mesh faces of adjusted mesh (-0.3% bundle volume
fraction error). (d)Adjusted mesh faces classified on interior fiber bundle surface.
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Figure 13. Finite element meshes of the single fiber bundle model. (a)93
vertices and 284 elements. (b)576 vertices and 2,549 elements. (c)4,156
vertices and 21,951 elements. (d)20.615 vertices and 110,638 elements.
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Figure 14. Coarse mesh of base two satin weave model.
(a)External mesh faces. (b)Fiber bundle surface mesh faces.
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Figure 15. Medium mesh of base two satin weave model.
(a)External mesh faces. (b)Fiber bundle surface mesh faces.
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Figure 16. Fine mesh of base two satin weave model.
(a)External mesh faces. (b)Fiber bundle surface mesh faces.
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Figure 17. Fiber bundle surface mesh faces of meshes corrected to
0.55 volume fraction. (a)Coarse mesh. (b)Medium mesh. (c)Fine mesh.
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Figure 19. Maximum principal stress values in a base two satin weave composite
resulting from a uniaxial x-direction stress of 100 ksi applied to the homogenized
material (Medium mesh). The peak stress in the warp bundles is 160 ksi.
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